
FlexGantt - Release 1
Policies & Commands

Dirk Lemmermann Software & Consulting
Asylweg 28
8134 Adliswil
Switzerland
www.dlsc.com

All rights reserved.
Java is a trademark registered ® to Sun Microsystems
http://java.sun.com

http://www.dlsc.com
http://www.dlsc.com
http://java.sun.com
http://java.sun.com

The image on the title page shows the application „PlanningForce“, which makes heavy use of FlexGantt. For more in-
formation on this product go to http://www.planningforce.com

FlexGantt Release 1.1.2

Document last updated on October 1st, 2008

http://www.planningforce.com
http://www.planningforce.com

Table of Content
Policies 1

Lookup & Registration 1

Creating New Policies 1

Commands 3
Command Stack 4

Command Stack Listener 4

Progress Monitor 5

Compound Commands 5

Command Interceptors 5

Threading Issues 6

Policies of AbstractGanttChart 7
IOverviewPolicy 7

IStatusBarPolicy 8

Policies of TreeTable 10
INodeDragAndDropPolicy 10

INodeEditPolicy 11

INodeIndentationPolicy 12

IRowPolicy 13

Policies of LayerContainer 15
ICrosshairPolicy 15

IDragAndDropPolicy 16

IDragInfoPolicy 17

IEditActivityObjectPolicy 18

IEditCapacityObjectPolicy 18

IEditLayerPolicy 19

IEditTimelineObjectPolicy 20

IGridLinePolicy 22

IGridPolicy 23

ILabelPolicy 25

ILinePolicy 25

IPopupPolicy 27

IRelationshipPolicy 28

ISelectionPolicy 29

Policies of Dateline 30
IZoomPolicy 30

Policies of Eventline 31
IEditEventlineObjectPolicy 31

IEventlineLabelPolicy 32

IEventlineSelectionPolicy 32

Appendix: „How to Correctly and Uniformly Use Progress Monitors“ 33
Using a progress monitor - what's up with that? 33

The protocol of IProgressMonitor 33

Delegating use of a progress monitor to subtasks 34

Managing the item count 35

How to call beginTask() and worked() 35

Mixing straightforward calls with subtasks 36

Ensure to always complete your monitor! 37

Cancellation 37

The NullProgressMonitor 37

Conclusion 38

Policies
The primary purpose of policies is to help components find out how to behave in certain situations. For example: the user
wants to select an activity. The TimelineObjectLayer, which handles the display and the selection of activities, can now
invoke methods on a specialized policy in order to find out, whether the activity is selectable at all. The policy helps the
layer to make a decision. Thatʻs what policies are: they are lightweight helper classes in the decision making process
and control flow of a component.

Policies are also used for looking up data that is not available in a model. The PopupLayer, for example, queries the
popup text for a timeline object from a policy of type IPopupPolicy. The popup information could have been added to a
model, but would have resulted in a bloated model API.

Another important use for policies is the lookup of commands. Commands are used to modify models. In most cases
simply updating the model is not enough. Applications often need to make calls to a backend to update the data source
(e.g. a database). Application developers can customize policies and return their own commands. These commands are
often subclasses of the default commands and add the required action to update the data source.

Lookup & Registration
Policies can be retrieved from policy providers. These are objects, which implement the IPolicyProvider interface. The
default implementation of this interface is the PolicyProvider class, which gets used by all policy-controlled components
in FlexGantt. The interface looks like this:

<T extends IPolicy> void IPolicyProvider.setPolicy(Class<T> policyType, T policyImpl);
<T extends IPolicy> T IPolicyProvider.getPolicy(Class<T> policyType);
void IPolicyProvider.addPolicyProviderListener(IPolicyProviderListener l);
void IPolicyProvider.removePolicyProviderListener(IPolicyProviderListener l);

The provider uses the policy interface class as the key for retrieving and specifying policy implementations. This ap-
proach guarantees that the provider will always return an object, which actually implements the required policy interface.
The policy provider of each component gets configured in the componentʻs constructor. We find the following lines of
code in the constructor of the LayerContainer class.

policyProvider.setPolicy(IDragAndDropPolicy.class, new DefaultDragAndDropPolicy());
policyProvider.setPolicy(IEditTimelineObjectPolicy.class, new DefaultEditTimelineObjectPolicy());
policyProvider.setPolicy(IEditActivityObjectPolicy.class, new DefaultEditActivityObjectPolicy());
policyProvider.setPolicy(IEditCapacityObjectPolicy.class, new DefaultEditCapacityObjectPolicy());
policyProvider.setPolicy(ILabelPolicy.class, new DefaultLabelPolicy());
policyProvider.setPolicy(IRelationshipPolicy.class, new DefaultRelationshipPolicy());
policyProvider.setPolicy(IPopupPolicy.class, new DefaultPopupPolicy());
policyProvider.setPolicy(ISelectionPolicy.class, new DefaultSelectionPolicy());
policyProvider.setPolicy(ICrosshairPolicy.class, new DefaultCrosshairPolicy());
policyProvider.setPolicy(IOverviewPolicy.class, new DefaultOverviewPolicy());
policyProvider.setPolicy(ILinePolicy.class, new DefaultLinePolicy());
policyProvider.setPolicy(IEditLayerPolicy.class, new DefaultEditLayerPolicy());
policyProvider.setPolicy(IGridPolicy.class, new TimeGranularityGridPolicy());
policyProvider.setPolicy(IGridLinePolicy.class, new TimeGranularityGridLinePolicy());
policyProvider.setPolicy(IDragInfoPolicy.class, new TimeGranularityDragInfoPolicy());

The following code can be used to replace one of these policies:

LayerContainer lc = myGantt.getLayerContainer(); // myGantt is an instance of GanttChart
IPolicyProvider pp = lc.getPolicyProvider();
pp.setPolicy(IPopupPolicy.class, new MyPopupPolicy());

The policy interfaces and their default implementations are located in packages that map to the components where they
are being used:

com.dlsc.flexgantt.policy.dateline // Dateline policies
com.dlsc.flexgantt.policy.eventline // Eventline policies
com.dlsc.flexgantt.policy.gantt // AbstractGanttChart policies
com.dlsc.flexgantt.policy.layer // LayerContainer policies
com.dlsc.flexgantt.policy.treetable // TreeTable policies

Creating New Policies
How much a developer gets into contact with policies can be very different from one application to another. Some appli-
cations have no need for modifying the already existing default policy implementations. Some need to subclass one or
more of the default policies in order to fine-tune them to their needs. And yet another class of applications might even
introduce their own policies. These new policies have to implement the IPolicy interface, which is an empty interface.

Page 1 FlexGantt - Policies & Commands

New policies should always subclass the AbstractPolicy class. This class provides its own assert functionality, which is
very much needed when implementing policies. The reason for this are the very generic signatures of policy methods. In
many cases the arguments are of type java.lang.Object. The assertClass() method of AbstractPolicy can be used to
check whether an object is of a more specific type. The method looks like this:

 public void assertClass(String methodName, String argName, Class<?> cl,
 Object obj) {
 if (methodName == null) {
 throw new IllegalArgumentException("method name can not be NULL");
 }
 if (argName == null) {
 throw new IllegalArgumentException("argument name can not be NULL");
 }
 if (cl == null) {
 throw new IllegalArgumentException("class can not be NULL");
 }
 if (obj == null) {
 throw new IllegalArgumentException("object can not be NULL");
 }
 if (!cl.isAssignableFrom(obj.getClass())) {
 String policyName = getClass().getName();
 throw new IllegalArgumentException("the policy of type "
 + policyName + " expected the argument '" + argName
 + "' of method '" + methodName + "' to be of type "
 + cl.getName() + " but it was of type "
 + obj.getClass().getName() + "!");
 }
 }

The method tries to make sure that the object „obj“ passed to the method „methodName“ for the argument „argName“ is
of type „cl“. If it isnʻt the method throws an exception.

The following is the implementation of the ILinePolicy1 used by the LayerContainer. It shows the assertClass() method in
action. One can see, that the policy methods accept java.lang.Object as the type for the tree table node argument. The
assertClass() method ensures that the node implements the IGanttChartNode interface, in which case the policy can
delegate to the matching methods of the node.

public class DefaultLinePolicy extends AbstractPolicy implements ILinePolicy {

 public int getLineCount(Object node, ITreeTableModel model) {
 assertClass("getLineCount", "node", IGanttChartNode.class, node);
 return ((IGanttChartNode) node).getLineCount();
 }

 public int getLineLocation(Object node, ITreeTableModel model,
 int lineIndex, int rowHeight) {
 assertClass("getLineLocation", "node", IGanttChartNode.class, node);
 return ((IGanttChartNode) node).getLineLocation(lineIndex, rowHeight);
 }

 public int getLineHeight(Object node, ITreeTableModel model, int lineIndex,
 int rowHeight) {
 assertClass("getLineHeight", "node", IGanttChartNode.class, node);
 return ((IGanttChartNode) node).getLineHeight(lineIndex, rowHeight);
 }

 public int getLineIndex(Object node, ITreeTableModel model,
 Object timelineObject) {
 assertClass("getLineIndex", "timelineObject", ITimelineObject.class,
 timelineObject);
 return ((ITimelineObject) timelineObject).getLineIndex();
 }

 public boolean isLineVisible(Object node, ITreeTableModel model,
 int lineIndex) {
 return true;
 }
}

FlexGantt - Policies & Commands Page 2

1 This policy is responsible for managing the „inner lines“ shown within a row. This feature can be used to display over-
lapping timeline objects.

Commands
Commands are used by the framework to modify models. They are looked up from policies when the user performs an
action. Most frameworks modify the model directly and then send an event to listeners, which perform the additonal work
needed to update the data source. However, using commands as an indirection to modify the data has the advantage
that undo / redo functionality and progress monitoring can be more easily added to an application.

Commands need to implement the ICommand interface. This interface defines the methods for executing, undoing, or
redoing a command:

public interface ICommand extends Serializable {

 /**
 * Executes the command.
 *
 * @param monitor
 * a progress monitor
 * @since 1.0
 */
 void executeCommand(IProgressMonitor monitor);

 /**
 * Undos the command.
 *
 * @param monitor
 * a progress monitor
 * @since 1.0
 */
 void undoCommand(IProgressMonitor monitor);

 /**
 * Redos the command.
 *
 * @param monitor
 * a progress monitor
 * @since 1.0
 */
 void redoCommand(IProgressMonitor monitor);

 /**
 * Determines whether the command is relevant for undo / redo operations.
 * Commands that are not conisdered to be relevant will not be added to the
 * list of commands that can be undone but they also do not invalidate that
 * list and the command stack remains undoable if it was undoable before.
 *
 * @return TRUE if the command is relevant
 * @since 1.0
 */
 boolean isRelevant();

 /**
 * Returns true if the command can be undone.
 *
 * @return true if the command is undoable
 * @since 1.0
 */
 boolean isUndoable();

 /**
 * Returns true if the command can be redone.
 *
 * @return true if the command is redoable
 * @since 1.0
 */
 boolean isRedoable();

 /**
 * The name of the command.
 *
 * @return the command's name
 * @since 1.0
 */
 String getName();
}

The interface also contains methods needed for operations performed by the command stack. These methods determine
whether a command is undoable or redoable and also whether it is a „relevant“ method. Only relevant methods are
added to the command stack and can be undone or redone.

Page 3 FlexGantt - Policies & Commands

Command Stack
Each Gantt chart manages its own command stack. It is called „stack“ because it internally uses a list to manage a stack
of executed commands. It allows the user to pop and push commands via execute, undo, and redo operations. The
availability of these operations can of course be limited based on the undo and redo support of the individual commands.
If a command is not undoable then the user will not be able to step back to any command before it. The command stack
can be retrieved from the Gantt chart by calling the following method on AbstractGanttChart:

public ICommandStack AbstractGanttChart.getCommandStack();

However, in most situations there is no need to have direct access to the command stack. When an application wants to
execute a command it simply calls the command execution methods on AbstractGanttChart:

public void AbstractGanttChart.commandExecute(ICommand cmd);
public void AbstractGanttChart.commandUndo();
public void AbstractGanttChart.commandRedo();

These methods create progress monitors and then delegate the call to the Gantt chartʻs command stack, which will per-
form the actual command execution in a specialized command execution thread. Any object can be a command stack as
long as it implements the ICommandStack interface.

public interface ICommandStack {
 void execute(ICommand cmd, IProgressMonitor monitor);
 void undo(IProgressMonitor monitor);
 void redo(IProgressMonitor monitor);
 void clear();
 boolean isUndoable();
 boolean isRedoable();
 ICommand getUndoableCommand();
 ICommand getRedoableCommand();
 void addCommandStackListener(ICommandStackListener l);
 void removeCommandStackListener(ICommandStackListener l);
}

Application developers can choose to use the same command stack for all Gantt charts by creating a single instance and
then setting it on each Gantt chart by calling the following method.

public void AbstractGanttChart.setCommandStack(ICommandStack);

Another option is to reuse an already existing command stack when the Gantt charts gets added to an already existing
project. Then the „old“ command stack needs to get extended with the „new“ ICommandStack interface. Last but not
least the command stack of the Gantt chart can also be used as the command stack for the entire application. All of
these options depend on the type and architecture of the application for which the Gantt chart will be used.

FlexGantt uses the DefaultCommandStack class for its Gantt charts. This command stack has a „size“ attribute, which
defines the maximum number of commands that remain on the stack. Commands will be removed from the bottom of the
stack if this number gets reached. This behaviour is necessary to avoid running out of memory. The size of the command
stack can be changed by the application developer. The fact that commands will not be garbage collected also means
that commands need to be implemented in a lightweight manner. The less memory a command requires to keep its
state2 the better.

Command Stack Listener
The command stack executes commands in a separate thread of type CommandExecutionThread. This class does not
add any functionality to the base class java.lang.Thread. It currently only exists to make it easier to identify the thread
(e.g. when debugging). The run() method of the thread performs the actual command execution and fires events of type
CommandStackEvent, which can be received by listeners attached to the command stack. These listeners need to im-
plement the ICommandStackListener interface. The event object contains an ID field that can be used to distinguish be-
tween different types of events. Possible events are:

• COMMAND_CANCELED - the user must have clicked on the „cancel“ button in the progress dialog

• COMMAND_EXECUTED - the command was successfully executed

• COMMAND_FAILED - the command execution failed

• COMMAND_STARTED - the command has started its execution

• COMMAND_UNDONE - the command was undone

FlexGantt - Policies & Commands Page 4

2 „State“ in this context means the information needed to undo the command

One command stack listener that is already included in FlexGantt is the class GanttChartGlassPane. It uses the events
that it receives in order to block user input during the time when a command gets executed.

Progress Monitor
Before delegating commands to the command stack, the Gantt chart creates an instance of IProgressMonitor and
passes it along with the command to the stack. This monitor allows long running tasks to give feedback to the user and
report how much work has been completed. FlexGantt uses the same progress monitor interface used by Eclipse as it is
completely independent of the UI technology used (Swing, SWT). The interface looks like this:

IProgressMonitor.beginTask(String, int)
IProgressMonitor.done()
IProgressMonitor.internalWorked(double)
IProgressMonitor.isCanceled()
IProgressMonitor.setCanceled(boolean)
IProgressMonitor.setTaskName(String)
IProgressMonitor.subTask(String)
IProgressMonitor.worked(int)

An in-depth explanation on how to use this interface is given in the appendix „How to Correctly and Uniformly Use Pro-
gress Monitors“. This article was copied from the Eclipse website.

Compound Commands
In FlexGantt users can create, delete, or modify multiple objects at the same time. The row height, for example, can be
modified for a single row with a simple drag operation but also for several rows at once if the user holds down the SHIFT
key while dragging. It is the DefaultRowResizeCommand that is performing the actual change of the height for a single
row. Multiple instances of this command would be needed in order to resize several rows at the same time but this ap-
proach would make the command stack less useful. The stack would be overloaded with commands and undo / redo
operations would be tiresome. This is where compound commands come in. They allow several commands to be exe-
cuted together. This way only a single command gets added to the command stack and can be undone or redone with
ease. The following table lists the compound commands defined by FlexGantt.

Compound Command Nested Command

DefaultCreateMultipleTimelineObjectsCommand DefaultCreateTimelineObjectCommand

DefaultChangeMultipleTimelineObjectsTimeSpanCommand DefaultChangeTimelineObjectTimeSpanCommand

DefaultDeleteMultipleEventlineObjectsCommand DefaultDeleteEventlineObjectCommand

DefaultDeleteMultipleNodesCommand DefaultDeleteNodeCommand

DefaultDeleteMultipleTimelineObjectsCommand DefaultDeleteTimelineObjectCommand

Command Interceptors
Many applications require that the user confirms and refines changes that are made to models. A typical scenario is a
dialog prompting the user with a message like „Are you sure you want to assign this task to this resource?“. Behaviour
like this can be implemented in FlexGantt by using so-called command interceptors. Interceptors need to implement the
ICommandInterceptor interface. This interface has only one method, which gets invoked before a command gets exe-
cuted.

boolean ICommandInterceptor.intercept(T gc, ICommand cmd);

Interceptors are the „glue“ between commands and the view. They are needed because policies and commands do not
have any backpointer to the view, which is why they can not prompt the user themselves. A key architectural decision in
FlexGantt in the decoupling of policies, models, and commands from the view. This allows them to be reused for other
UI technologies. Currently only the Swing framework is supported by FlexGantt but other UI frameworks might be sup-
ported in the future. If, for example, an SWT view gets added then the policies and commands could be reused. Intercep-
tors need to be registered with the Gantt chart for which they are used. This is done by mapping the command type to
the interceptor instance by invoking the following method on AbstractGanttChart:

AbstractGanttChart.setCommandInterceptor(Class<? extends ICommand> cmdClass,
 ICommandInterceptor inter);

Page 5 FlexGantt - Policies & Commands

Only one interceptor is registered by default. It is the one used for DefaultCreateEventlineObjectCommand.class. This
interceptor shows the following dialog when the user wants to create a new object in the eventline.

Create Eventline Object Interceptor

Threading Issues
We already know that commands in FlexGantt are executed in their own thread (CommandExecutionThread). We also
know that commands perform changes on the models (e.g. IGanttChartModel). These changes cause events to be fired
from the models to their listeners (e.g. IGanttChartModelListener). Some of the listeners are Swing components, which
now have to update themselves in various ways. Simple repaints cause no problems, because the repaint() method of
these components is thread-safe. However, some of the FlexGantt components perform more elaborate updates of their
internal state, which can cause problems like concurrent modifications of collections.

To avoid this problem the FlexGantt components call the static invokeLater(Runnable) or the invokeAndWait(Runnable)
methods of the SwingUtilities class. These methods ensure that the Runnable passed to them will be executed on the
Event Dispatch Thread (EDT). Application developers need to be aware of this problematic whenever they add listeners
to models. Their listeners, too, will be called within the command thread. This fact might be relevant, depending on the
purpose of the listeners.

FlexGantt - Policies & Commands Page 6

Policies of AbstractGanttChart
The superclass of all FlexGantt Gantt charts is basically an empty container and it is the responsibility of the subclasses
to add components to it. The simple GanttChart class adds a single tree table and a single layer container to it. The more
advanced DualGanttChart adds two of each. Even though the abstract superclass does not define any children compo-
nents, it still provides policies: The IOverviewPolicy and the IStatusBarPolicy.

Gantt Chart

IOverviewPolicy
Implementation: DefaultOverviewPolicy
 Commands: N/A
 Used By: OverviewPalette

The overview policy is used by the overview selector, which provides „radar“ functionality. In the selector all timeline ob-
jects are visible all the time time. The colors used for these timeline objects and the icons shown on top of them can be
controlled via the policy. The following snapshot shows an overview selector, which uses two different colors for the time-
line objects (red and black). The meaning of the red color could be that the task represented by the timeline object is
delayed. The yellow warning icons might indicate that a task does not have a resource assigned to it, yet.

Overview Selector

Policy Method Purpose

Object getOverviewStatus(
 Object node,
 Object timelineObject,
 IGanttChartModel model);

Returns an object, which represents the state of a timeline object. This object
is used as a key to lookup the color and / or icon from the LayerContainer.

public void setTimelineObjectStatusColor(
 Object status, Color color)
public Color getTimelineObjectStatusColor(
 Object status)

public void setTimelineObjectStatusIcon(
 Object status, Icon icon)
public Icon getTimelineObjectStatusIcon(
 Object status)

Page 7 FlexGantt - Policies & Commands

The default implementation of this policy is called DefaultOverviewPolicy, which assumes that the timeline object passed
to it implements the ITimelineObject interface. It then performs a cast and delegates to the interface.

public Object getOverviewStatus(Object node, Object timelineObject,
 IGanttChartModel model) {
 assertClass("getOverviewStatus", "timelineObject", ITimelineObject.class, timelineObject);
 return ((ITimelineObject) timelineObject).getStatus();
}

Please note how the assertClass() method gets used to verify that the timeline object really does implement the ITime-
lineObject interface. If it doesnʻt then the assert method will print out a nicely formatted warning message to the standard
system out stream.

IStatusBarPolicy
Implementation: AbstractStatusBarPolicy
 TimeGranularityStatusBarPolicy
 SimpleGranularityStatusBarPolicy
 Commands: N/A
 Used By: GanttChartStatusBar

The statusbar policy is used to control which information will be shown in the status bar and how this information will be
formatted. Several fields are shown in the statusbar. Some of these fields display time points or time spans. Depending
on the currently used dateline model these time points and time spans need to be rendered very differently. The model
class SimpleGranularityDatelineModel requires the statusbar to show time points as numbers (1, 2, 3,) and time
spans as pairs of numbers (1 - 10, 10 - 20, ...). The TimeGranularityDatelineModel needs the statusbar to display stan-
dard time information such as "Mon. Jan 5th". Accordingly there are two different statusbar policies: SimpleGranularityS-
tatusBarPolicy and TimeGranularityStatusBarPolicy. By default the FlexGantt Gantt chart classes GanttChart and Dual-
GanttChart use the TimeGranularityDatelineModel together with TimeGranularityStatusBarPolicy. SimpleGranularityDu-
alGanttChart and SimpleGranularityGanttChart use SimpleGranularityDatelineModel together with the SimpleGranulari-
tyStatusBartPolicy.

The following table lists the methods of IStatusBarPolicy and describes their purpose:

Policy Method Purpose

String getTimeNowString(
 IDatelineModel, long)

Returns a formated text representing the given time point.

String getTimeSpanString(
 IDatelineModel, ITimeSpan)

Returns a formated text representing the given time span.

String getTimeString(
 IDatelineModel, long)

Returns a formated text representing the given time point.

boolean isStatusBarFieldVisible(
 StatusBarField)

Determines whether the given status bar field will be shown in the status
bar or not. The constructors of IStatusBarPolicy implementations usually
accept a collection of fields and then check in this method whether the
field is included in the collection or not.

The Enumerator StatusBarField contains several values, used to distinguish between the different status bar fields:

StatusbarField Purpose

CROSSHAIR A field used as a visual indicator for the crosshair feature (is the crosshair turned on or off).

GRID A field used as a visual indicator for the current mode of the grid (major grid, minor grid, off).

KEY_STROKES This field brings up a selector, which lists all currently registered actions and the key strokes
used to trigger them.

MEMORY A field, which displays the available and the currently used memory. A hidden feature is the
garbage collection that can be triggered by clicking on the field.

FlexGantt - Policies & Commands Page 8

StatusbarField Purpose

MESSAGE A field used as a visual indicator for the presence of status messages (error, warning, informa-
tion messages). The field displays different icons based on the severity level of the messages.
A click on the field brings up a new window, which lists all messages currently attached to the
Gantt chart.

POPUP A field used as a visual indicator for the popup feature (are popups turned on or off)

PROGRESS_BAR A field used to display a progress bar. The status bar implements the IProgressMonitor inter-
face and can be used as a progress monitor when executing commands.

TIME A field, which displays the time at the current location of the mouse cursor.

TIME_NOW A field that is used to display the „time now“ (in most cases the system time / the computerʻs
time).

TIME_NOW_LOCK A field that can be used to lock the horizontal scrolling behaviour to the „time now“. The visible
area of the Gantt chart automatically follows the vertical line, which (normally) displays the
current system time.

TIME_ZONE A field that shows the current time zone used by the dateline. By clicking on the field the user
can bring up a dialog to change the timezone.

The class AbstractStatusBarPolicy adds all fields to itself, except for the TIME_ZONE field. This is due to the fact that
most planning and scheduling applications donʻt need it.

It should be noted that the GanttChartStatusBar class is just one possible implementation of a statusbar for a FlexGantt
Gantt chart. The superclass of GanttChartStatusBar is called StatusBar. It is completely independent of any Gantt chart
classes. Developers are free to implement their own statusbar by subclassing this class (or any other class for that mat-
ter). For more information on this topic, please consult the document „FlexGantt - Components“.

Page 9 FlexGantt - Policies & Commands

Policies of TreeTable
Most of the policies used for the tree table deal with its editing behaviour. This makes sense, since the tableʻs primary
purpose is data entry and display. The data display gets controlled by the tree table cell renderers, so there is no need
for policies in that area.

INodeDragAndDropPolicy
Implementation: DefaultNodeDragAndDropPolicy
 Commands: DefaultNodeDragAndDropCommand
 Used By: TreeTableDragAndDropManager

The INodeDragAndDropPolicy gets used to control the drag & drop (DnD) operations within the tree table. The methods
within this policy determine whether a node is draggable and where it can be dropped. Once a drag and drop operation
is complete the policy also returns the command that shall be used to perform the necessary model modifications.

TreeTable Drag & Drop

FlexGantt uses the standard drag and drop concepts that are built into AWT. It is important to understand these con-
cepts in order to completely understand how the INodeDragAndDropPolicy works. Please visit the following site to learn
more about drag and drop: http://java.sun.com/docs/books/tutorial/dnd/

Policy Method Purpose

int getDragActions(Object node,
 ITreeTableModel model);

Returns the drag actions that are allowed for the given timeline
object object. The actions are defined as integer constants in the
java.awt.dnd.DnDConstants class:

• ACTION_COPY
• ACTION_COPY_OR_MOVE
• ACTION_LINK
• ACTION_MOVE
• ACTION_NONE
• ACTION_REFERENCE

FlexGantt only supports „none“ and the copying and / or moving
of timeline objects. The drag and drop behaviour is platform de-
pendent, which means that different operating systems use diffe-
rent modifier keys to distinguish between a copy and a move (on
Windows use the CTRL key to perform a copy).

int getDropActions(Object draggedNode,
 Object draggedNodeParent,
 ITreeTableModel draggedNodeModel,

 Object newParentNode,
 ITreeTableModel newModel);

Returns the possible drop actions for the given dragged timeline
object on the given target node. The user will only be able to
drop the timeline object if the drag action matches one of the
drop actions.

ICommand getDragAndDropCommand(
 Object droppedNode,
 Object oldParent,
 ITreeTableModel oldModel,
 int oldChildIndex,
 Object newParent,
 ITreeTableModel newModel,
 int newChildIndex,
 int dropAction);

Returns the command object that will perform the actual changes
required in order to detach the node from its current parent and
attach it to its new parent.

FlexGantt - Policies & Commands Page 10

INodeEditPolicy
Implementation: DefaultNodeEditPolicy
 Commands: DefaultChangeKeyCommand
 DefaultChangeValueCommand
 DefaultCreateNodeCommand
 DefaultDeleteMultipleNodesCommand
 DefaultDeleteNodeCommand
 DefaultInsertNodeCommand
 Used By: TreeTable

The tree table is an editable component, which means that the user can change the values in the tree cells, create new
nodes / rows, or delete nodes / rows. This policy is used to control which editing features are available and how they are
being executed (commands).

‚

Policy Method Purpose

boolean isKeyEditable(
 Object node,
 ITreeTableModel model);

Returns true if the key value of a node in the tree table can be edited by
the user. This is the value shown in the key column. The key column is the
column, which displays the hierarchical tree structure of the Gantt chart
model.

boolean isValueEditable(
 Object node,
 ITreeTableModel model,
 int modelIndex);

Returns true if the value in the column with the given model index can be
edited by the user.

boolean isSelectable(
 Object node,
 ITreeTableModel model);

Returns true if the given node is selectable by the user.

boolean isDeletable(
 Object node,
 ITreeTableModel model);

Returns true if the given node is deletable by the user.

boolean isCreateEnabled(
 ITreeTableModel model);

Returns true if the table allows the user to interactively create new rows /
nodes. If this is the case then a little arrow becomes visible to the left of
the row below the last used row. This unused row can be used to create
new nodes.

New Row Marker

ICommand getDeleteNodeCommand(
 Object node,
 ITreeTableModel model);

Returns the command that will be used to delete the given node.

ICommand getDeleteNodesCommand(
 List<Object> node,
 ITreeTableModel model);

Returns the command that will be used to delete the given nodes (several
at the same time).

ICommand getCreateNodeCommand(
 Object parentNode,
 ITreeTableModel model,
 Object key,
 Object[] values);

Returns the command that will be used to create a new node.

ICommand getInsertNodeCommand(
 Object parentNode,
 int childIndex,
 ITreeTableModel model);

Returns the command that will be used to insert a new row between two
already existing rows.

Page 11 FlexGantt - Policies & Commands

Policy Method Purpose

ICommand getChangeKeyCommand(
 Object node,
 ITreeTableModel model,
 Object key);

Returns the command that will be used to change the „key“ value of a tree
table node.

ICommand getChangeValueCommand(
 Object node,
 ITreeTableModel model,
 Object value,
 int index);

Returns the command that will be used to change the column value for the
given model index of the given node.

The default implementation of this policy delegates most of its work to the ITreeTableNode interface.

public boolean isKeyEditable(Object node, ITreeTableModel model) {
 return ((ITreeTableNode) node).isKeyEditable();
}

public boolean isValueEditable(Object node, ITreeTableModel model,
 int modelIndex) {
 return ((ITreeTableNode) node).isValueEditable(modelIndex);
}

public boolean isDeletable(Object node, ITreeTableModel model) {
 return ((ITreeTableNode) node).isDeletable();
}

public boolean isSelectable(Object node, ITreeTableModel model) {
 return ((ITreeTableNode) node).isSelectable();
}

INodeIndentationPolicy
Implementation: DefaultNodeIndentationPolicy
 Commands: DefaultIndentNodesCommand
 DefaultOutdentNodesCommand
 Used By: TreeTable

The tree table allows the user to interactively indent nodes. This means, that a node gets reassigned to a new parent
node and the hierarchy shown in the table changes. One use case for this behaviour is the creation of the structure of an
organization (company, departments, people). The following snapshot shows the visual feedback shown to the user. The
mouse cursor changes its shape and a black vertical line appears.

Node Indentation

FlexGantt uses the term „outdent“ for the inverse of the indentation operation. It should be noted that this word does not
exist in the English language. It was used for symmetrie.

Policy Method Purpose

boolean isIndentable(
 Object node,
 ITreeTableModel model);

Returns true if the user is allowed to indent the given tree node. Inden-
tation means that the node gets reassigned as a child to the node that
is currently located above it.

boolean isOutdentable(
 Object node,
 ITreeTableModel model);

Returns true if the user is allowed to outdent the given tree node. Out-
dentation is the opposite of indentation. A node gets reassigned as a
child to the parent of its current parent.

FlexGantt - Policies & Commands Page 12

Policy Method Purpose

ICommand getIndentationCommand(
 Object[] nodes,
 Object oldParent,
 int[] oldChildIndices,
 Object newParent,
 int[] newChildIndices,
 ITreeTableModel model);

Returns the command used for indenting a node.

ICommand getOutdentationCommand(
 Object[] nodes,
 Object oldParent,
 int[] oldChildIndices,
 Object newParent,
 int[] newChildIndices,
 ITreeTableModel model);

Returns the command used for outdenting a node.

The default implementation of this policy uses the two commands DefaultIndentNodesCommand and DefaultOutdent-
NodesCommand. Both of these commands subclass the DefaultReassignNodesCommand. Custom indentation com-
mands are free to subclass this class.

IRowPolicy
Implementation: DefaultRowPolicy
 Commands: DefaultRowResizeCommand
 Used By: AbstractRowHeader
 TreeTable
 TreeTableNode
 GridLayer
 OverviewPalette

The behaviour and apperance of rows inside the Gantt chart can be controlled via this policy. The policy defines the cur-
rent height of a row, its minimum height, and its maximum height. The policy also determines whether a row is resizable
or not, whether its horizontal line gets drawn, and the content of the tooltip that will be shown. The following snapshot
shows the visual feedback shown to the user during a resize operation: the mouse cursor will change its shape and a
short horizontal line becomes visible.

Row Resize Operation

Policy Method Purpose

int getRowHeight(
 Object node,
 ITreeTableModel model);

Returns the current height of the row for the given node.

int getRowHeightMinimum(
 Object node,
 ITreeTableModel model);

Returns the minimum height that a row can have. This is relevant when
the user changes the row height via the mouse.

int getRowHeightMaximum(
 Object node,
 ITreeTableModel model);

Returns the maximum height that a row can have. This is relevant
when the user changes the row height via the mouse.

boolean isRowResizable(
 Object node,
 ITreeTableModel model);

Returns true if the row where the given node is located is resizable.

Page 13 FlexGantt - Policies & Commands

Policy Method Purpose

boolean isRowLineVisible(
 Object node,
 boolean expanded,
 ITreeTableModel model);

Returns true if a horizontal line shall be drawn at the bottom of the row
that displays the given node. Not showing this line allows an applicati-
on to group rows together.

Grouping of Rows

String getRowToolTip(
 Object node,
 ITreeTableModel model,
 TreeTableColumn column);

Returns a text that will be displayed as the tooltip when the mouse
cursor hovers over the given node. The additional „column“ parameter
can be used to return tooltips for individual cells.

ICommand getRowResizeCommand(
 Object node,
 ITreeTableModel model,
 int rowHeight);

Returns the command that will be used for resizing the row where the
given node is located.

FlexGantt - Policies & Commands Page 14

Policies of LayerContainer
The layer container is the component with the largest number of policies. This is due to the fact that it is a very „rich“
component in respect to visualization and editing capabilities. The more features a component has, the more customiza-
tion potential is available.

ICrosshairPolicy
Implementation: DefaultCrosshairPolicy
 Commands: N/A
 Used By: CrosshairLayer

The crosshair feature is a very good instrument for training classes and product demonstrations. It allows the presenter
to highlight a timeline object. The crosshair can display up to four labels in the four corners around the center. The con-
tent of these labels can be configured by the crosshair policy.

Crosshair Feature

Policy Method Purpose

boolean isLabelVisible(
 LabelPosition position);

Determines if the label at the given position is visible or not. The enu-
merator LabelPosition is defined inside the interface ICrosshairPolicy.
Possible values are UPPER_LEFT, UPPER_RIGHT, LOWER_LEFT,
and LOWER_RIGHT.

String getLabel(
 Object node,
 TimelineObjectPath path,
 IGanttChartModel model,
 long time,
 LabelPosition position);

Returns the label for the given position (see above). The method recei-
ves the node (equals the row), the path to the timeline object, the mo-
del, and the time at the current mouse position as input.

The default implementation can be configured with different formatters for the dates shown. One formatter is used for the
time at the current mouse location, the other for the start and end times of the timeline object.

public void setTimelineDateFormat(DateFormat format) {
public void setTimelineObjectDateFormat(DateFormat format)

The default implementation displays the following information in the four positions:

Position Text

UPPER_LEFT The time span of the timeline object on which the crosshair cursor is hovering (if there is one, blank
otherwise).

UPPER_RIGHT The time at the current crosshair cursor position.

LOWER_LEFT The name of the timeline object on which the crosshair cursor is hovering (if there is one, blank o-
therwise).

LOWER_RIGHT The name of the hierarchy node that belongs to the row over which the crosshair cursor is hovering.

Page 15 FlexGantt - Policies & Commands

IDragAndDropPolicy
Implementation: DefaultDragAndDropPolicy
 Commands: DefaultDragAndDropCommand
 DefaultMultiDragAndDropCommand
 Used By: DragLayer
 LassoLayer
 DefaultDragRowRenderer
 DefaultEditModeController

The drag and drop policy gets invoked whenever a drag gesture gets recognized by the layer container. This is the case
when the mouse cursor hovers over a timeline object and the user presses and drags the mouse. At the beginning of the
drag operation the DragLayer calls upon the policy to check which drag actions (copy and / or move) are supported by
the timeline object.

While the drag operation is going on it checks which actions are allowed at the current drop location. A drop is only pos-
sible if the allowed drop actions contain the user-requested drop action. If the drop is valid the drag layer looks up the
drag and drop command from the policy, which will then perform the actual model modification. In a first step the default
commands remove the dragged timeline object from its current parent and attaches it to the new parent. If the timeline
object happens to be the source or the target of one or more relationships then the command will fix these in a second
step.

The drag and drop actions are defined in the class java.awt.dnd.DnDConstants.

 /**
 * An int representing no action.
 */
 public static final int ACTION_NONE = 0x0;

 /**
 * An int representing a copy action.
 */
 public static final int ACTION_COPY = 0x1;

 /**
 * An int representing a move action.
 */
 public static final int ACTION_MOVE = 0x2;

 /**
 * An int representing a copy or move actions.
 */
 public static final int ACTION_COPY_OR_MOVE = ACTION_COPY | ACTION_MOVE;

 /**
 * An int representing a link action.
 */
 public static final int ACTION_LINK = 0x40000000;

 /**
 * An int representing a reference action (synonym for ACTION_LINK).
 */
 public static final int ACTION_REFERENCE = ACTION_LINK;

Please note that FlexGantt does not use the „verbs“ LINK and REFERENCE. The user can only copy or move timeline
objects. Do not mistake relationships as links. Creating relationships is done by the LassoLayer via standard mouse lis-
teners and not via the drag and drop API.

Policy Method Purpose

int getDragActions(
 TimelineObjectPath path,
 IGanttChartModel model);

Returns the drag actions that are supported by the timeline object to
which the path points. The timeline object is a member of the given mo-
del. This method basically asks the questions „What is it that I can do
with you? Can I move you somewhere else? Can I copy you?“.

int getDropActions(
 TimelineObjectPath path,
 IGanttChartModel model,
 Object newNode,
 IGanttChartModel newModel,
 long newStartTime);

Returns the drop actions that are allowed for the given arguments. This
method answers the question „What exactly is the user allowed to do
with this timeline object on this row (node)? Can the object be moved
here? Can it be copied?“.

FlexGantt - Policies & Commands Page 16

Policy Method Purpose

ICommand getDragAndDropCommand(
 TimelineObjectPath path,
 IGanttChartModel model,
 Object newNode,
 IGanttChartModel newModel,
 long newStartTime,
 Object[] timelineObjects,
 ILayer layer,
 int dropAction);

Returns the command that will be used to execute the user-requested
drop action. The command can use the dropAction value to determine
whether the user wants to copy or move the timeline object. The com-
mand returned by this method has to ensure that those relationships
where the timeline object is a source or a target will be fixed. Relations-
hips contain paths to timeline objects. These paths will be most likely
different after the drag and drop. They remain intact if the timeline object
gets dropped on the same row.

The default implementation DefaultDragAndDropPolicy delegates to the following two methods that are defined on the
ITimelineObject and IGanttChartNode interfaces:

int ITimelineObject.getDragActions();
int IGanttChartNode.getDropActions(Object timelineObject, long timeAtDropLocation);

Using the drag and drop policy seems complicated but for the most cases it is completely sufficient to focus on the val-
ues returned by these interface methods. The getDragActions() method needs to return an integer, which represents
what the user can do. The value of this integer is either NONE, MOVE, COPY, or COPY_OR_MOVE. The node method
getDropActions() has to consider the arguments passed to it and base its return value on them: „Do I accept this type of
timeline object? If I do, can the user only move the timeline object to me (the node) or can he also create a copy? Do I
care about the time point at the drop location? Should I accept a timeline object that was dropped in the past?“ And so on
and so on.

The class DefaultGanttChartNode accepts all timeline objects that are being „moved“ to it. It rejects all timeline objects
when the user tries to perform a „copy“, because the DefaultDragAndDropCommand doesnʻt know how to execute a
copy. However, the timeline object class DefaultTimelineObject allows copies and moves. Application developers need to
implement their own commands if they want to copy timeline objects. AbstractDragAndDropCommand can be used as
the superclass for these custom commands. It provides the fixRelationships() method for repairing the relationships of
the dragged timeline objects.

protected void fixRelationships(ITimelineObject object,
 IGanttChartNode oldOwner, IGanttChartNode newOwner,
 DefaultGanttChartModel oldModel, DefaultGanttChartModel newModel) {
 Iterator<IRelationship> iter = oldModel.getRelationships();
 while (iter.hasNext()) {
 IRelationship rel = iter.next();
 TimelineObjectPath newPath = newModel.getTimelineObjectPath(
 newOwner, object, layer);
 if (rel.getSourcePath().getTimelineObject().equals(object)) {
 // adjust the source path
 rel.setSourcePath(newPath);
 } else if (rel.getTargetPath().getTimelineObject().equals(object)) {
 // adjust the target path
 rel.setTargetPath(newPath);
 }
 }
}

IDragInfoPolicy
Implementations: DefaultDragInfoPolicy
 TimeGranularityDragInfoPolicy
 Commands: N/A
 Used By: DragLayer
 DefaultDragInfoRenderer

It is very important that the user receives feedback during drag and drop operations, so that he knows what the result of
the operation will be. This information is provided by the IDragInfoPolicy. It returns an object, which represents / contains
the drag info data. The DragLayer and IDragInfoRenderer instances are then responsible for visualizing the data.

Drag Info

Page 17 FlexGantt - Policies & Commands

Policy Method Purpose

Object getDragInfo(
 TimelineObjectPath path,
 IGanttChartModel model,
 Object dropNode,
 ITimeSpan dropSpan);

Returns the drag information needed when the user drags a timeline
object. Drags also occure when the user simply changes the start or
the end time of the timeline object. Drag and drop does not mean that
the timeline object gets placed on a different row.

Object getDragInfo(
 TimelineObjectPath path,
 IGanttChartModel model,
 long timePoint,
 double percentageComplete);

Returns the drag information needed when the user changes the
percentage complete value of an activity object. Activity objects extend
timeline objects with an additional field that stores the „percentage
complete“ value.

Object getDragInfo(
 TimelineObjectPath path,
 IGanttChartModel model,
 int rowHeight,
 int y,
 double capacityUsed);

Returns the drag information needed when the user changes the capa-
city value of a capacity object. Capacity objects extend timeline objects
with an additional field that stores the „capacity used“ value.

The type of the drag info objects can be used to register different renderers on the DragLayer.

public void DragLayer.setDragInfoRenderer(Class cl, IDragInfoRenderer renderer);

IEditActivityObjectPolicy
Implementation: DefaultEditActivityObjectPolicy
 Commands: DefaultChangePercentageCommand
 Used By: DragLayer
 ActivityObjectEditModeController

The IActivityObject interface is an extension of the ITimelineObject interface. It adds a single new field to timeline objects
called „percentage complete“. This value is often used in project planning applications to express how much of the ne-
cessary work for a task has been completed. In FlexGantt the user can interactively modify this value. When the mouse
hovers on top of such an activity object the user will be presented with a little slider at the bottom of the activity. The de-
fault settings of ActivityObjectEditModeController now allow the user to move the slider by holding down the SHIFT key
and dragging the mouse to the left or right. This of course will only be possible if the IEditActivityObjectPolicy allows it
and if also provides a command, which will perform the necessary model modification.

Activitiy Object with Percentage Slider

Policy Method Purpose

boolean isPercentageChangeable(
 TimelineObjectPath path,
 IGanttChartModel model);

Returns true if the user is allowed to change the „percentage complete“
value.

ICommand getChangePercentageCommand(
 TimelineObjectPath path,
 IGanttChartModel model,
 double percentage);

Returns a command that will modify the model so that the given value
will be used as the new „percentage complete“ value for the activity
object specified by the given timeline object path.

IEditCapacityObjectPolicy
Implementation: DefaultEditCapacityObjectPolicy
 Commands: DefaultChangeCapacityCommand
 Used By: DragLayer
 CapacityObjectEditModeController

The ICapacityObject interface is an extension of the ITimelineObject interface. It adds a single new field to timeline ob-
jects called „capacity used“. This value can be used to implement capacity profiles for limited-capacity resources. In
FlexGantt the user can interactively modify this value. When the mouse hovers over the top edge of such a capacity
object the mouse cursor will change. The default settings of CapacityObjectEditModeController now allow the user to
change the height of the object by holding down the SHIFT key and dragging the mouse up or down. This of course will

FlexGantt - Policies & Commands Page 18

only be possible if the IEditCapacityObjectPolicy allows it and if also provides a command, which will perform the ne-
cessary model modification.

Capacity Object

Policy Method Purpose

boolean isCapacityChangeable(
 TimelineObjectPath path,
 IGanttChartModel model);

Returns true if the user is allowed to change the „capacity used“ value.

ICommand getChangeCapacityCommand(
 TimelineObjectPath path,
 IGanttChartModel model,
 double newCapacityUsed);

Returns a command that will modify the model so that the given value
will be used as the new „capacity used“ value for the capacity object
specified by the given timeline object path.

IEditLayerPolicy
Implementation: DefaultEditLayerPolicy
 Commands: DefaultAddLayerCommand
 DefaultRemoveLayerCommand
 Used By: LayerPalette

Layers can be added and removed from a Gantt chart model. The IEditLayerPolicy returns the commands that are nee-
ded for the model changes. The following image shows the layer selector with red „delete“ icons.

Layer Selector

Policy Method Purpose

ICommand getAddLayerCommand(
 ILayer layer,
 IGanttChartModel model);

Returns the command used for adding the given layer to the given
model.

ICommand getRemoveLayerCommand(
 ILayer layer,
 IGanttChartModel model);

Returns the command used for removing the given layer from the given
model.

Note: layers can only be removed from the model via the UI if the feature DELETION was added to the layer:

boolean ILayer.isFeatureEnabled(ILayer.Feature feature); // interface

public void Layer.addFeature(ILayer.Feature feature); // implementation
public void Layer.removeFeature(ILayer.Feature feature);

Page 19 FlexGantt - Policies & Commands

IEditTimelineObjectPolicy
Implementation: DefaultEditTimelineObjectPolicy
 Commands: DefaultChangeMultipleTimelineObjectsTimeSpanCommand
 DefaultChangeTimelineObjectTimeSpanCommand
 DefaultCreateTimelineObjectCommand
 DefaultDeleteMultipleTimelineObjectsCommand
 Used By: DragLayer
 EditingLayer
 LassoLayer

The IEditTimelineObjectPolicy defines which editing operations are allowed for timeline objects. Possible operations are:
changing the start time, changing the duration, bringing up an in-place editor, creating new timeline objects, deleting ex-
isting ones.

Policy Method Purpose

boolean isInPlaceEditable(
 TimelineObjectPath path,
 IGanttChartModel model);

Returns true if the user can bring up an „in-place“ editor by double-
clicking on a timeline object. These editors are somewhat special
as they are not shown in a new window or dialog. Instead they are
directly added to the layer container.

The editors have have to implement the ITimelineObjectEditor
interface. In most cases they extend the
AbstractTimelineObjectEditor class. New editors have to be
registered on the layer container:

public void LayerContainer.setTimelineObjectEditor(
 Class tloCass,
 ITimelineObjectEditor editor);

FlexGantt ships with two built-in editors. One for the standard
timeline objects (DefaultTimelineObject) and one for activity
objects (DefaultActivityObject).

Timeline Object Editor

Activity Object Editor

FlexGantt - Policies & Commands Page 20

Policy Method Purpose

boolean isStartTimeChangeable(
 TimelineObjectPath path,
 IGanttChartModel model);

Returns true if the user can change the start time of the given
timeline object. Changing the start time can mean two different
things, depending on whether the user is also allowed to change
the duration.

• If the duration can not be changed, then the permission to
change the start time means that the timeline object can be
moved left or right.

• If the duration can be changed, then the permission to change
the start time means that the timeline object can start earlier and
the overall duration of the timeline object changes.

boolean isDurationChangeable(
 TimelineObjectPath path,
 IGanttChartModel model);

Returns true if the user is allowed to drag the right edge of a
timeline object in order to change the objectʻs duration (time span).

boolean isDeletable(
 TimelineObjectPath path,
 IGanttChartModel model);

Returns true if the given timeline object may be deleted by the
user.

boolean isCreatable(
 Object node,
 IGanttChartModel model,
 ILayer layer,
 ITimeSpan span);

Returns true if the user is allowed to create new timeline objects
on the given layer for the given time span and node.

ICommand getChangeTimeSpanCommand(
 TimelineObjectPath path,
 IGanttChartModel model,
 ITimeSpan span,
 int dropAction);

Returns the command that will be used to change the time span of
the given timeline object.

The „dropAction“ argument originates from Javaʻs drag and drop
API. It is usually used to distinguish between a MOVE and a
COPY. This, of course, doesnʻt make sense when changing the
duration of a timeline object but it might be useful as a flag for
something else, e.g. to distinguish between a „change duration if
no constraints are violated“ and a „change duration even if it
causes an inconsistent schedule“.

The values for the „dropAction“ argument are defined in the class
java.awt.dnd.DnDConstants.

ICommand getChangeTimeSpansCommand(
 IGanttChartModel model,
 List<TimelineObjectPath> paths,
 List<ITimeSpan> timeSpans,
 int dropAction);

Returns the command that will be used to change the time spans
of the given timeline objects.

The two lists containing the time spans and the timeline objects
are in sync, which means that the first time span shall be applied
to the first timeline object and the second time span shall be
applied to the second timeline object, and so on.

This method gets invoked by the layer container, when the user
wants to perform an an “alignment“ of several timeline objects
(same start time, same end time).

The „dropAction“ argument originates from Javaʻs drag and drop
API. It is usually used to distinguish between a MOVE and a
COPY. This, of course, doesnʻt make sense when changing the
duration of a timeline object but it might be useful as a flag for
something else, e.g. to distinguish between a „change duration if
no constraints are violated“ and a „change duration even if it
causes an inconsistent schedule“.

The values for the „dropAction“ argument are defined in the class
java.awt.dnd.DnDConstants.

Page 21 FlexGantt - Policies & Commands

Policy Method Purpose

ICommand getCreateCommand(
 Object node,
 IGanttChartModel model,
 ILayer layer,
 ITimeSpan span,
 int lineIndex);

Returns the command that will be used to create a new timeline
object on the given node, model, layer, time span, and line index.

ICommand getDeleteCommand(
 IGanttChartModel model,
 Collection<TimelineObjectPath>
 paths);

Returns the command that will be used to delete the given timeline
objects.

The default implementation of this policy delegates to the ITimelineObject interface for checking the editing features of
timeline objects.

IGridLinePolicy
Implementations: DefaultGridLinePolicy
 TimeGranularityGridLinePolicy
 Commands: N/A
 Used By: GridLayer

The grid line policy (do not confuse with grid policy) controls the behaviour of the major and minor grid lines. In general
the GridLayer is capable of displaying either the minor grid lines, or the major grid lines or both at the same time. Usually
the major grid lines are located on top of a minor grid lines. Depending on the dateline model there might be situations
where this is not the case (e.g. the TimeGranularityDatelineModel showing major grid lines for months and minor grid
lines for weeks). In these cases it is favourable not to show the major grid lines in the „combined“ grid line mode because
they are not in synch with the minor grid lines. This kind of logic can be expressed by the grid line policy.

Policy Method Purpose

boolean isMajorGridLinesVisible(
 IDatelineModel model,
 GridLineMode mode);

Returns true if the grid lines for the currently shown major time granula-
rity are visible when the given grid line mode was chosen by the user.

boolean isMinorGridLinesVisible(
 IDatelineModel model,
 GridLineMode mode);

Returns true if the grid lines for the currently shown minor time granula-
rity are visible when the given grid line mode was chosen by the user.

The following are the default implementations of the two grid line policy methods. They are very straight forward.

public boolean isMajorGridLinesVisible(IDatelineModel datelineModel,
 GridLineMode mode) {
 switch (mode) {
 case COMBINED_GRID_LINES:
 case MAJOR_GRID_LINES:
 return true;
 case MINOR_GRID_LINES:
 case NO_GRID_LINES:
 return false;
 }
 return false;
}

public boolean isMinorGridLinesVisible(IDatelineModel datelineModel,
 GridLineMode mode) {
 switch (mode) {
 case COMBINED_GRID_LINES:
 case MINOR_GRID_LINES:
 return true;
 case MAJOR_GRID_LINES:
 case NO_GRID_LINES:
 return false;
 }
 return false;
}

FlexGantt - Policies & Commands Page 22

The specialization TimeGranularityGridLinePolicy covers the case described above. The implementation ensures that
major grid lines are not visible if the minor granularity displayed in the dateline is „weeks“:

public boolean isMajorGridLinesVisible(IDatelineModel datelineModel,
 GridLineMode mode) {
 assertClass("isMajorGridLinesVisible", "datelineModel",
 TimeGranularityDatelineModel.class, datelineModel);
 switch (mode) {
 case MAJOR_GRID_LINES:
 return true;
 case COMBINED_GRID_LINES:
 TimeGranularityDatelineModel tgModel = (TimeGranularityDatelineModel) datelineModel;
 TimeGranularity tg = tgModel.getGranularity();

 /*
 * The dateline model says that it is displaying weeks. In this case
 * we don‘t want to see major grid lines.
 */
 if (tg.equals(TimeGranularity.WEEK)) {
 return false;
 }
 return true;
 case MINOR_GRID_LINES:
 return false;
 case NO_GRID_LINES:
 return false;
 }
 return false;
}

IGridPolicy
Implementations: AbstractGridPolicy
 TimeGranularityGridPolicy
 SimpleGranularityGridPolicy
 Commands: N/A
 Used By: GanttChartStatusBar
 Timeline
 Eventline
 GridSelector
 DragLayer
 LassoLayer

The grid policy (do not confuse with grid line policy) is used to realize a virtual and invisible grid on the Eventline and the
LayerContainer component. The grid is used to easily position and align timeline objects during editing operations
(changing the start time, the duration, or the node / row). The dragged timeline object snaps to the grid lines when the
user releases the mouse button.

The Gantt chart returns an array of those components that implement the IGridComponent interface. Normally these are
a single Eventline instance and one or more LayerContainer instances. The GridControlPanel then creates a GridControl
for each one of these grid-supporting controls. When clicked the GridSelector appears and the user can select the de-
sired grid settings.

Grid Selector

The grid line policy provides several methods for calculating grid-adjusted time points. One for the start time, one for the
end time, and one for a time span. When implemented each one of these methods need to respect the „autoGrid“ flag
passed to them. This flag controls whether the granularity used for the grid will be the one passed to the method or the
one currently shown in the dateline.

Page 23 FlexGantt - Policies & Commands

Policy Method Purpose

IGranularity[] getGridGranularities(); Returns an array of all granularities that are supported by
the grid. The user gets the option to select one of these
granularities for the next editing operation. The GridSelec-
tor class lists the granularities.

long getGridAdjustedStartTime(
 IGranularity granularity,
 long unadjustedStartTime,
 IDatelineModel<IGranularity> model,
 boolean autoGrid);

Calculates a start time (e.g. for a timeline object) based on
a granularity and time point. The method will use the cur-
rently displayed minor time granularity if the „autoGrid“ flag
is true and the passed granularity otherwise.

long getGridAdjustedEndTime(
 IGranularity granularity,
 long unadjustedEndTime,
 IDatelineModel<IGranularity> model,
 boolean autoGrid);

Calculates an end time (e.g. for a timeline object) based
on a granularity and time point. The method will use the
currently displayed minor time granularity if the „autoGrid“
flag is true and the passed granularity otherwise.

ITimeSpan getGridAdjustedTimeSpan(
 IGranularity granularity,
 ITimeSpan unadjustedTimeSpan,
 IDatelineModel<IGranularity> model,
 boolean autoGrid);

Calculates a time span (e.g. for a timeline object) based
on a granularity and time point. The method will use the
currently displayed minor time granularity if the „autoGrid“
flag is true and the passed granularity otherwise.

Internally the policy implementation TimeGranularityGridPolicy uses the same calculation for the start and the end times:

private long getGridAdjustedTime(TimeGranularity tg, long time,
 IDatelineModel<TimeGranularity> datelineModel, boolean autoGrid) {

 /*
 * If the automatic grid is enabled then we use the granularity that is
 * currently used by the dateline.
 */
 if (autoGrid) {
 tg = datelineModel.getGranularity();
 }

 /*
 * No granularity whatsoever means no work, simply return the original
 * time point.
 */
 if (tg == null) {
 return time;
 }

 /*
 * Calculate the time point to the left (earlier) of the given time.
 */
 Date d1 = new Date(time);
 tg.adjustDate(d1);
 long t1 = d1.getTime();

 /*
 * Calculate the time point to the right (later) of the given time.
 */
 Date d2 = new Date(time);
 tg.adjustDate(d2);
 tg.increment(d2);
 long t2 = d2.getTime();

 /*
 * Return the time point that is 'closer' to the given time.
 */
 if (Math.abs(time - t1) < Math.abs(time - t2)) {
 return t1;
 }
 return t2;
}

This is how SimpleGranularityGridPolicy calculates the adjusted time point:

private long getGridAdjustedTime(SimpleGranularity sg, long time,
 IDatelineModel<SimpleGranularity> model, boolean autoGrid) {
 if (autoGrid) {
 sg = model.getGranularity();

FlexGantt - Policies & Commands Page 24

 }
 long result = sg.adjust(time);
 return result;
}

ILabelPolicy
Implementation: DefaultLabelPolicy
 Commands: N/A
 Used By: LabelLayer
 GanttChartStatusBar
 DefaultDragInfoRenderer

The label policy servers a very simple purpose. It is used to lookup various labels for timeline objects and relationships.
These labels can then be displayed in the statusbar or in the label layer (e.g. the text to the right of a timeline object).

Policy Method Purpose

boolean isLabelTypeVisible(
 TimelineObjectPath path,
 IGanttChartModel model,
 LabelType type);

Checks whether the given label type is visible at all. This is, for examp-
le, useful when some timeline objects want their status to be shown in
the status bar and others donʻt (because they are not relevant for
scheduling activities).

String getLabel(
 TimelineObjectPath path,
 IGanttChartModel model,
 LabelType type);

Returns a piece of text for the given label type and timeline object.

String getLabel(
 IRelationship relationship,
 IGanttChartModel model);

Returns a piece of text for the given label type and relationship.

ILinePolicy
Implementation: DefaultLinePolicy
 Commands: N/A
 Used By: OverviewPalette
 TimelineObjectLayer
 LassoLayer
 DefaultRowRenderer

The line policy is used for the „multi-line“ feature, which allows applications to place timeline objects on different lines
within the same row. This feature is very useful when timeline objects can overlap each other. The line policy is often
used in combination with the row policy (IRowPolicy) because in most cases the row height has to be adjusted when
changing the line count. More lines usually need more space.

The default behaviour of the policy is to equally distribute the lines across the height of the row. If, for example, the line
count of a row is 5 and the row height is 100, then the rows will be located at y = 0, 20, 40, 60 and 80. Each line will have
a height of 100 / 5 = 20. This, however, can be altered by custom implementations of this policy. Lines can be located
anywhere, they can overlap, and they can all have their own height.

Policy Method Purpose

int getLineCount(
 Object node,
 ITreeTableModel model);

Returns the number of lines inside the row of the given node.

int getLineIndex(
 Object node,
 ITreeTableModel model,
 Object timelineObject);

Returns the line index of the given timeline object. This index is used to
place the timeline object on its line. The index range always starts with
0 and ends with line count minus 1. A line index of -1 will place a time-
line object on the entire row. An exception will be thrown if a timeline
object returns an invalid index.

Page 25 FlexGantt - Policies & Commands

Policy Method Purpose

int getLineLocation(
 Object node,
 ITreeTableModel model,
 int lineIndex,
 int rowHeight);

Returns the y-coordinate of the given line. Lines can be located any-
where within the row. Lines may even overlap.

int getLineHeight(
 Object node,
 ITreeTableModel model,
 int lineIndex,
 int rowHeight);

Returns the height of the given line. Each line can have its own height.

boolean isLineVisible(
 Object node,
 ITreeTableModel model,
 int lineIndex);

Determines whether the line will be visible or not. The timeline objects
on the line will always be shown even if this method returns false. This
flag only controls whether a horizontal gray line will be visible inside the
row, which helps to distinguish between the lines.

The default implementation of this policy delegates to the interfaces IGanttChartNode and ITimelineObject.

int IGanttChartNode.getLineCount()
int IGanttChartNode.getLineLocation(int lineIndex, int rowHeight);
int IGanttChartNode.getLineHeight(int lineIndex, int rowHeight);

int ITimelineObject.getLineIndex();

The default implementations of the IGanttChartNode methods are shown here:

/**
 * Specifies how many lines will be shown within the node's row. Timeline
 * objects can be placed on any one of these lines.
 *
 * @param count
 * the numer of lines shown within the node's row
 */
public void setLineCount(int count) {
 if (count < 0) {
 throw new IllegalArgumentException("illegal line count " + count
 + " (must be larger than or equal to 0)");
 }
 this.lineCount = count;
}

/*
 * @see com.dlsc.flexgantt.model.gantt.IGanttChartNode#getLineCount()
 */
public int getLineCount() {
 return lineCount;
}

/*
 * @see com.dlsc.flexgantt.model.gantt.IGanttChartNode#getLineLocation(int,
 * int)
 */
public int getLineLocation(int lineIndex, int rowHeight) {
 int count = getLineCount();
 if (lineIndex >= count) {
 throw new IllegalArgumentException("illegal line index "
 + lineIndex + " (line count = " + count + ")");
 }
 if (lineIndex >= 0) {
 double h = (double) rowHeight / (double) count;
 return (int) (lineIndex * h);
 }
 return 0;
}

/*
 * @see com.dlsc.flexgantt.model.gantt.IGanttChartNode#getLineHeight(int,
 * int)
 */
public int getLineHeight(int lineIndex, int rowHeight) {
 int count = getLineCount();
 if (lineIndex >= count) {
 throw new IllegalArgumentException("illegal line index "

FlexGantt - Policies & Commands Page 26

 + lineIndex + " (line count = " + count + ")");
 }
 if (lineIndex >= 0) {
 if (lineIndex < count - 1) {
 return getLineLocation(lineIndex + 1, rowHeight)
 - getLineLocation(lineIndex, rowHeight);
 }
 return rowHeight - getLineLocation(count - 1, rowHeight) - 1;
 }
 return rowHeight;
}

IPopupPolicy
Implementation: DefaultPopupPolicy
 Commands: N/A
 Used By: PopupLayer
 TreeTable

Popups are a very useful feature for providing detailed information about a tree node or timeline object and the business
object that either one represent. Popups show up when the mouse cursor hovers over a tree node or timeline object that
has a popup value associated with it. A popup value can be any kind of object. It is up to the popup renderers to visualize
the value. The PopupLayer class is responsible for drawing the popups. Each timeline object can carry a standard and
an extended popup value. The user can toggle between these two by pressing or releasing the SHIFT key.

Policy Method Purpose

Object getPopupValue(
 TimelineObjectPath path,
 IGanttChartModel model,
 boolean extended);

Returns the input for the popup for the given timeline object. The „extended“
attribute is used to distinguish between the standard and the extended po-
pup values.

Object getPopupTitleValue(
 TimelineObjectPath path,
 IGanttChartModel model);

Returns the input for creating a title for the popup of the given timeline ob-
ject.

Object getPopupValue(
 TreePath path,
 IGanttChartModel model,
boolean extended);

Returns the input for the popup for the given tree node. The „extended“
attribute is used to distinguish between the standard and the extended po-
pup values.

Object getPopupTitleValue(
 TreePath path,
 IGanttChartModel model);

Returns the input for creating a title for the popup of the given tree ode.

The default implementation of this policy delegates to the ITimelineObject and the IGanttChartNode interfaces:

public class DefaultPopupPolicy extends AbstractPolicy implements IPopupPolicy {

 public Object getPopupValue(TimelineObjectPath path,
 IGanttChartModel model, boolean extended) {
 assertClass("getPopupValue", "path.getTimelineObject()", ITimelineObject.class,
 path.getTimelineObject());
 return ((ITimelineObject) path.getTimelineObject())
 .getPopupObject(extended);
 }

 public Object getPopupTitleValue(TimelineObjectPath path,
 IGanttChartModel model) {
 assertClass("getPopupValue", "path.getTimelineObject()", ITimelineObject.class,
 path.getTimelineObject());
 return ((ITimelineObject) path.getTimelineObject())
 .getPopupTitleObject();
 }

 public Object getPopupValue(TreePath path, IGanttChartModel model,
 boolean extended) {
 assertClass("getPopupValue", "path.getLastPathComponent()", ITreeTableNode.class,
 path.getLastPathComponent());
 return ((ITreeTableNode) path.getLastPathComponent())
 .getPopupObject(extended);
 }

 public Object getPopupTitleValue(TreePath path, IGanttChartModel model) {

Page 27 FlexGantt - Policies & Commands

 assertClass("getPopupValue", "path.getLastPathComponent()", ITreeTableNode.class,
 path.getLastPathComponent());
 return ((ITreeTableNode) path.getLastPathComponent())
 .getPopupTitleObject();
 }
}

IRelationshipPolicy
Implementation: DefaultRelationshipPolicy
 Commands: DefaultCreateRelationshipCommand
 Used By: LassoLayer

FlexGantt uses the very abstract term „relationship“ in order to model such things like predecessors, successors, or
constraints (finish-before, start-after, same-end, same-beginning). The LassoLayer is used as a controller for letting the
user interactively create relationships between timeline objects. In order to do so the layer needs the answer to one
question: can the timeline object be used as the source or the target of a relationship? It is the purpose of the relation-
ship policy to answer this question.

Relationship Line

Policy Method Purpose

boolean isRelationshipSource(
 TimelineObjectPath path,
 IGanttChartModel model);

Returns true if the given timeline object can be used as the source
of a relationship.

boolean isRelationshipTarget(
 TimelineObjectPath sourcePath,
 TimelineObjectPath targetPath,
 IGanttChartModel model);

Returns true if the given timeline object can be used as the target of
a relationship. The default relationship renderer draws an arrow at
the target location.

ICommand getCreateRelationshipCommand(
 TimelineObjectPath sourcePath,
 TimelineObjectPath targetPath,
 IGanttChartModel model)

Returns the command that will create the new relationship object
and add it to the model.

The default implementation of this policy looks like this:

public class DefaultRelationshipPolicy extends AbstractPolicy implements IRelationshipPolicy {

 public ICommand getCreateRelationshipCommand(TimelineObjectPath sourcePath,
 TimelineObjectPath targetPath, IGanttChartModel model) {
 assertClass("getRelationshipCommand", "model", DefaultGanttChartModel.class, model);
 return new DefaultCreateRelationshipCommand(sourcePath, targetPath,
 (DefaultGanttChartModel) model);
 }

 public boolean isRelationshipSource(TimelineObjectPath path,
 IGanttChartModel model) {
 return true;
 }

 public boolean isRelationshipTarget(TimelineObjectPath sourcePath,
 TimelineObjectPath targetPath, IGanttChartModel model) {
 return true;
 }
}

According to this implementation any timeline object can be the source or the target of a new relationship.

FlexGantt - Policies & Commands Page 28

ISelectionPolicy
Implementation: DefaultSelectionPolicy
 Commands: N/A
 Used By: TimelineObjectLayer
 LassoLayer

The selection policy controls two different types of selections that the user can perform: the user can select timeline ob-
jects and time spans . Selected time spans are added to the selection model of the LayerContainer3 as they are inde-
pendent of the layers currently shown. Timeline objects, however, are added to the selection model of the layer4 on
which they are shown.

Time Span Selection

Timeline Object Selection

Policy Method Purpose

boolean isSelectable(
 Object node,
 ITimeSpan span,
 IGanttChartModel model);

Returns true if the given time span on the given node (row) can be
selected by the user. One example where this method is useful is the
disabling of selections where the time spans are already in the past.

boolean isSelectable(
 TimelineObjectPath path,
 IGanttChartModel model);

Returns true if the timeline object given by the path is selectable.
Scheduling applications often add timeline objects for decoration pur-
poses only. These objects should not be selectable.

The default implementation of this policy delegates to the ITimelineObject interface in order to find out whether an object
is selectable or not.

boolean ITimelineObject.isSelectable();

For time spans the policy delegates to the IGanttChartNode interface:

boolean IGanttChartNode.isSelectable(ITimeSpan);

Page 29 FlexGantt - Policies & Commands

3 An instance of ILayerContainerSelectionModel. This model only manages time span selections.

4 Each layer has its own instance of ITimelineObjectLayerSelectionModel. This model only manages timeline object se-
lections. The selection model for each layer can be looked up from the LayerContainer (getSelectionModel(ILayer)).

Policies of Dateline
The dateline currently only supports a single policy type, which is used for zooming operations. However, this might
change in future releases as new features are constantly added to the entire framework.

Dateline

IZoomPolicy
Implementations: AbstractZoomPolicy
 SimpleGranularityZoomPolicy
 TimeGranularityZoomPolicy
 Commands: N/A
 Used By: TimeGranularityTimelineControlPanel
 TimeGranularityDatelineModel
 SimpleGranularityDatelineModel
 SimpleDateline
 DefaultDatelineMenuProvider
 GranularitySelector

The dateline supports several zooming operations: zoom in - shows only half of the currently visible time span, zoom
out - makes a time span visible that is twice as long as the current one, zoom into - the user can request a specific time
span to be made visible, granularity change - the user can request a specific time granularity to be shown (weeks,
months, ...).

The zoom policy supports these operations by listing all the granularities that are supported by the Dateline. The policy
implementation TimeGranularityZoomPolicy lists only a subset of the values defined by the TimeGranularity enumerator
(the range from MINUTE to YEAR). This is done by the default constructor, which looks like this:

/**
 * Constructs a new policy with a time granularity range of [MINUTE, YEAR].
 */
public TimeGranularityZoomPolicy() {
 this(TimeGranularity.getRange(TimeGranularity.MINUTE, TimeGranularity.YEAR));
}

The abstract super class AbstractZoomPolicy ensures that the granularity values are in sorted order. It can do this by
invoking the isSmaller(IGranularity) and isLarger(IGranularity) methods of the IGranularity interface. The following snap-
shot shows the granularity selector with the default granularity set in place.

Granularity Selector

Policy Method Purpose

public int getGranularityCount(); Returns the total number of granularities supported by the dateline.

public IGranularity getGranularity(
 int index);

Returns the granularity for the given index.

public int getGranularityIndex(
 IGranularity granularity);

Returns the index for the given granularity.

FlexGantt - Policies & Commands Page 30

Policies of Eventline
The eventline defines three policies, each one of them covering a different aspect. One deals with the eventlineʻs editing
behaviour, one with its selection behaviour, and one with label decoration. The eventline is located underneath the date-
line and it is responsible for displaying events and activities that can not be associated with any particular row (e.g. com-
pany holidays, milestones, ...).

Eventline

IEditEventlineObjectPolicy
Implementation: DefaultEditEventlineObjectPolicy
 Commands: DefaultChangeEventlineObjectTimeSpanCommand
 DefaultCreateEventlineObjectCommand
 DefaultDeleteMultipleEventlineObjectsCommand
 Used By: Eventline
 DefaultEventlineObjectRenderer

The objects shown in the Eventline component can be edited in a very similar manner to the way timeline objects can be
edited in the LayerContainer component. Which modifications are allowed gets determined by this policy (start time, du-
ration, deletion, creation). If a modification is allowed by the policy then the appropriate command for performing the ac-
tual model change can be retrieved from the policy as well.

Policy Method Purpose

boolean isStartTimeChangeable(
 Object eventlineObject,
 IEventlineModel model);

Returns true if the start time of the given eventline object can
be changed.

boolean isDurationChangeable(
 Object eventlineObject,
 IEventlineModel model);

Returns true if the duration of the given eventline object can
be changed.

boolean isDeletable(
 Object eventlineObject,
 IEventlineModel model);

Returns true if the given eventline object can be deleted.

boolean isCreatable(
 IEventlineModel model,
 ITimeSpan span);

Returns true if the user is allowed to interactively create a
new eventline object for the given time span.

ICommand getCreateCommand(
 IEventlineModel model,
 ITimeSpan span);

Returns the command that shall be used to create a new
eventline object for the given model and time span.

ICommand getChangeTimeSpanCommand(
 Object eventlineObject,
 IEventlineModel model,
 ITimeSpan span);

Returns the command that shall be used to modify the time
span of the given eventline object.

ICommand getDeleteCommand(
 Collection<Object> eventlineObjects,
 IEventlineModel model);

Returns the command that shall be used to delete the given
eventline objects. The command needs to be able to delete
several eventline objects at the same time.

The default implementation of this policy delegates all boolean methods to the IEventlineObject interface.

Page 31 FlexGantt - Policies & Commands

IEventlineLabelPolicy
Implementation: DefaultEventlineLabelPolicy
 Commands: N/A
 Used By: Eventline
 GanttChartStatusBar
 DefaultEventlineObjectRenderer

This label policy can be used to lookup various pieces of text that can be used to decorate an eventline object.

Policy Method Purpose

String getLabel(
 Object eventlineObject,
 IEventlineModel model,
 LabelType type);

Returns a text for the given label type. The LabelType enumerator lists
various possible types of text (NAME, TOOLTIP, POPUP_TITLE, ...).
Currently only the type NAME is used by the Eventline. Future releases
might make use of additional types. However, if no text is specified for
a given type, then by default the NAME text will be used.

The following code fragment shows the default implementation of this policy and how it delegates to the IEventlineObject
interface.

public String getLabel(Object eventlineObject, IEventlineModel model,
 LabelType type) {
 assertClass("getLabel", "eventlineObject", IEventlineObject.class, eventlineObject);
 return ((IEventlineObject) eventlineObject).getLabel(type);
}

IEventlineSelectionPolicy
Implementation: DefaultEventlineSelectionPolicy
 Commands: N/A
 Used By: Eventline

The only purpose of this policy is to determine whether a given eventline object currently displayed in the Eventline can
be selected by the user or not.

Policy Method Purpose

boolean isSelectable(
 Object eventlineObject,
 IEventlineModel model);

If this method returns true then the user will be able to select the given
eventline object.

This policy, too, delegates to the IEventlineObject interface:

public boolean isSelectable(Object eventlineObject, IEventlineModel model) {
 assertClass("isSelectable()", "eventlineObject", IEventlineObject.class, eventlineObject);
 return ((IEventlineObject) eventlineObject).isSelectable();
}

FlexGantt - Policies & Commands Page 32

Appendix: „How to Correctly and Uniformly Use Progress Monitors“
Handling a progress monitor instance is deceptively simple. It seems to be straightforward but it is easy to make a mis-
take when using them. And, depending on numerous factors such as the underlying implementation, how it is displayed,
if itʼs set to use a fixed number of work items or ʻunknownʼ, if used through a SubProgressMonitor wrapper etc., the result
can range from completely ok, mildly confusing or outright silliness.

In this article I hope I can lay down a few ground rules that will help anyone use progress monitors in a way that will work
with the explicit and implicit contract of IProgressMonitor. Also, understanding the usage side makes it easier to under-
stand how to implement a monitor.

By Kenneth Ölwing, BEA JRPG
January 18, 2006

Using a progress monitor - what's up with that?
It all really comes down to a few, not too complex, rules. A common theme is 'know what you know - but only that'. This
means that you shouldn't assume you know things you really don't know, and this includes the common mistake of only
considering progress monitors you have seen, i.e. typically the graphical ones when using the IDE. Another thing to
watch out for is the fact that commonly you design a number of tasks that may call each other using sub progress moni-
tors, and while doing that make assumptions based on your knowledge that they will be called in this manner - never
forget that sometime maybe your separate subtasks may be called from not-yet-written routines. It's then vitally important
that your subtasks act exactly in a 'neutral' manner, i.e. with no 'implicit assumptions' on what happened before or what
will happen after.

One of the motivations for this article is when I tried my hand at implementing a progress monitor intended for headless/
console use - and realised that code using it could make it look really wacky when the monitor was wrongly used, and
this was issues that were not as readily apparent with a graphical monitor. Also, code (including my own) frequently
abuses the explicit and implicit (which admittedly are my interpretation of reasonable behavior) contract that the IPro-
gressMonitor interface states, and this makes for dicey decisions for a monitor implementor - should it complain (and
how) when it gets conflicting orders? If not, how should it then behave to make for a reasonable and intuitive user expe-
rience?

The protocol of IProgressMonitor
Generally, all interaction with a progress monitor is through the interface IProgressMonitor and this interface defines the
protocol behavior expected. It does leave some things up in the air though; for example, the description states some
things that should be true, but the methods have no throws clause that helps enforce some invariants. I have chosen to
interpret the descriptions ̒ hardʼ, even to the point of saying itʼs valid to throw an (unchecked) exception if a described rule
is violated (this is somewhat controversial of course - if you implement a monitor doing this you should probably provide
a way to turn off 'strictness'). Hopefully we could eventually see a new interface that deprecates the old methods and
provides new ones that better reflect the contract. The discussion below is based on the assumption that the reader is
familiar with the general API; review it in the Eclipse help.

The first important consideration is the realization that a monitor (contract wise) can be in basically four states. Any given
implementation may or may not track those state changes and may or may not do anything about them, which is part of
the reason that misbehaving users of a monitor sometimes gets away with it. Only one of these states are readily test-
able using the interface however (if the monitor is canceled); the other states are just a given from correct use of the in-
terface.

Essentially, the state changes are governed by the methods beginTask(), done() and setCanceled(), plus the implicit ini-
tial state of a new instance. Note that for the purposes discussed here the perceived ʻchanges in stateʼ occurring as a
result from calling worked() is not relevant. A separate discussion below details how to deal with worked() calls.

Please note that the states described here are not any ̒ officialeseʼ that can be found as constants or anything like that;
theyʼre only here to serve so they can be used for discussion.

• PRISTINE - This is the initial state of a newly created instance of an IProgressMonitor implementation, i.e. before
beginTask() has been called. In principle a given implementation may handle a single instance such that it is reus-
able and reverted back to the PRISTINE state after a done() call, but that is opaque from the point of the contract.
In this state it should be essentially correct and possible to go to any of the other states, but the typical and ex-
pected transition should be from PRISTINE to IN_USE as a result from a successful beginTask() call. The transition
to FINISHED should result only in a very particular situation, see more below.

Page 33 FlexGantt - Policies & Commands

• IN_USE - This is the state the monitor after the first and only call to beginTask(). This is one of those things that are
very easy to get wrong; contract wise, beginTask() can and should only be called at most once for a given instance.
A more detailed discussion on the code pattern required to deal with this obligation can be found below.

• FINISHED - The transition to this state is achieved by calling done(). As with beginTask(), done() should only be
called once and should always be called on a monitor when beginTask() has been called (i.e. it is ok to not call
done() only if the monitor is still in the PRISTINE state). Again, the discussion below is more detailed on how to
ensure proper protocol.

• CANCELED - Actually, this state is slightly murky; itʼs possible that canceled/not canceled should be tracked sepa-
rately from the others. But, contract wise it should be adequate if this state is either achieved directly from PRIS-
TINE and just left that way, or if done() is called (likely as a result of detecting the canceled status), it is cleared and
the monitor then transitions to FINISHED.

Now, one contract pattern described above is that if beginTask() is ever called, done() MUST be called. This is achieved
by always following this code pattern (all code is simplified):

monitor = … // somehow get a new progress monitor which is in a pristine state
// figure some things out such as number of items to process etc…
try
 {
 monitor.beginTask(…)
 // do stuff and call worked() for each item worked on, and check for cancellation
 }
finally
 {
 monitor.done()
 }

The important thing here then is to ensure that done() is always called (by virtue of being in the finally clause) but (nor-
mally) only if beginTask() has been successfully called (by virtue of being the first thing called in the try clause). There is
a small loophole that could cause done() to be called without the monitor actually transitioning from PRISTINE to
IN_USE. This loophole can with this pattern only happen if a particular beginTask() implementation throws an unchecked
exception (The interface itself declares no throws clause) before it internally makes a note of the state change (if the
specific implementation even tracks state in this manner and/or is too loose in its treatment of the interface contract).

Arguably, you should always strive for calling beginTask()/done(). The reasons for this are buried in the fact that you in
principle never know when you are being called as a subtask. If you don't 'complete' the monitor, the parent can end up
with an incorrect count for its own task. The full rationale is covered more below, in the section "Ensure to always com-
plete your monitor!".

Delegating use of a progress monitor to subtasks
Above for the IN_USE state I mentioned that itʼs very easy to get things wrong; beginTask() should never be called more
than once. This frequently happens in code that doesnʼt correctly understand the implications of the contract. Specifically,
such code pass on the same instance it has been given to subtasks, and those subtasks; not aware that the caller al-
ready has begun following the contract, also tries following the contract in the expected manner – i.e. they start by doing
a beginTask().

Thus, passing on a monitor instance is almost always wrong unless the code knows exactly what the implications are. So
the rule becomes: In the general case, a piece of code that has received a progress monitor from a caller should always
assume that the instance they are given is theirs and thus completely follow the beginTask()/done() protocol, and if it has
subtasks that also needs a progress monitor, they should be given their own monitor instances through further use of the
SubProgressMonitor implementation that wraps the ʻtop-levelʼ monitor and correctly passes on worked() calls etc (more
on this below).

Sample code to illustrate this:

monitor = … // somehow get a new progress monitor which is in a pristine state

// figure some things out such as number of items to process etc…
try {
 monitor.beginTask(…)
 // do stuff and call worked() for each item processed, and check for cancellation
 …
 // farm out a piece of the work that is logically done by ‘me’ to something else
 someThing.doWork(new SubProgressMonitor(monitor,…))
 // farm out another piece of the work that is logically done by ‘me’ to something else
 anotherThing.doWork(new SubProgressMonitor(monitor,…))
} finally {

FlexGantt - Policies & Commands Page 34

 monitor.done()
}

Note that each doWork() call gets a new instance of a SubProgressMonitor; such instances can and should not be re-
used for all the protocol reasons already discussed.

The only time a single instance of a monitor passed to, or retrieved by, a certain piece code can be reused in multiple
places (e.g. typically methods called by the original receiver), is when the code in such methods is so intimately coupled
so that they in effect constitute a single try/finally block. Also, for this to work each method must know exactly who does
beginTask()/done() calls, and also (donʼt forget this) how many work items they represent of the total reported to begin-
Task() so that they can make the correct reports. Personally, I believe this is generally more trouble than itʼs worth – al-
ways follow the regular pattern of one receiver, one unique monitor instead and the code as a whole is more maintain-
able.

Managing the item count
This section is about how to do the initial beginTask() call and report the amount of total work expected, and then ideally
report exactly that many items to the monitor. It is ok to end up not reporting all items in one particular case: when the job
is aborted (due to cancellation by user, an exception thrown and so on) – this is normal and expected behavior and we
will wind up in the finally clause where done() is called.

It is however sloppy technique to ʻjust pick a numberʼ for the total and then call worked(), reporting a number and hope
that the total is never exceeded. Either way this can cause very erratic behavior of the absolute top level and user visible
progress bar (it is for a human weʼre doing this after all) – if the total is too big compared to the actual items reported, a
progress bar will move slowly, perhaps not at all due to scaling and then suddenly (at the done() call) jump directly to
completed. If the total is too small, the bar will quickly reach ʼ100%ʼ or very close to it and then stay there ʻforeverʼ.

So, first and foremost: do not guess on the number of work items. Itʼs a simple binary answer: either you know exactly
how many things that will be processed…or you donʼt know. It IS ok to not know! If you don't know, just
report IProgressMonitor.UNKNOWN as the total number, call worked() to your hearts content and a clever progress
monitor implementation will still do something useful with it. Note that each (sub)task can and should make its own deci-
sion on what it knows or not. If all are following the protocol it will ensure proper behavior at the outer, human visible end.
A heads up though: never ca l l the SubProgressMoni tor (parentMoni tor, subt icks) const ruc tor
using IProgressMonitor.UNKNOWN for subticks - this is wrong! More on this later.

How to call beginTask() and worked()
There are typically two basic patterns where you know how many items you want to process: either you are going to call
several different methods to achieve the full result, or you are going to call one method for each instance in a collection
of some sort. Either way you know the total item count to process (the number of methods or the size of the collection).
Variations of this are obviously combinations of these basic patterns so just multiply and sum it all up.

There is sometimes a benefit of scaling your total a bit. So, instead of reporting ʻ3ʼ as the total (and do worked(1) for
each item) you may consider scaling with, say 1000, and reporting ʻ3000ʼ instead (and do worked(1000) for each item).
The benefit comes up when you are farming out work to subtasks through a SubProgressMonitor; since they may inter-
nally have a very different total, especially one that is much bigger than your total, you give them (and the monitor in-
stance) some ʻroomʼ to more smoothly consume and display the allotment youʼve given them (more explanations below
on how to mix worked() and SubProgressMonitor work below). Consider that you say ʻmy total is 3ʼ and you then give a
subtask ʻ1ʼ of these to consume. If the subtask now will report several thousand worked() calls, and assuming that the
actual human visible progress bar also has the room, the internal protocol between a SubProgressMonitor and itʼs
wrapped monitor will scale better and give more smooth movement if you instead would have given it ʻ1000ʼ out of
ʻ3000ʼ. Or not - the point is really that you don't know what monitor implementation will be active, all you can do is give
some information. How it's then displayed in reality is a matter of how nifty the progress monitor implementation is.

A sample of simple calls:

monitor = … // somehow get a new progress monitor which is in a pristine state
int total = 3 // hardcoded and known
try
 {
 monitor.beginTask(total)

 // item 1
 this.doPart1()
 monitor.worked(1)

Page 35 FlexGantt - Policies & Commands

 // item 2
 this.doPart2()
 monitor.worked(1)

 // item 3
 this.doPart3()
 monitor.worked(1)
 }
finally
 {
 monitor.done()
 }

No reason to scale and no collection to dynamically compute.

A more elaborate sample:

monitor = … // somehow get a new progress monitor which is in a pristine state
int total = thingyList.size() * 3 + 2
try {
 monitor.beginTask(total)

 // item 1
 this.doBeforeAllThingies()
 monitor.worked(1)

 // items 2 to total-1
 for (Thingy t : thingyList) {
 t.doThisFirst()
 monitor.worked(1)
 t.thenDoThat()
 monitor.worked(1)
 t.lastlyDoThis()
 monitor.worked(1)
 }

 // final item
 this.doAfterAllThingies()
 monitor.worked(1)
 } finally {
 monitor.done()
 }

Mixing straightforward calls with subtasks
I was initially confused by how to report progress when I farmed out work to subtasks. I experienced ʻreporting too much
workʼ since I didnʼt understand when to call and when to not call worked(). Once I caught on, the rule is very simple.
However: calling a subtask with a SubProgressMonitor is basically an implicit call to worked() with the amount allotted to
the subtask. So instead of this:

monitor = … // somehow get a new progress monitor which is in a pristine state
int scale = 1000
int total = 3 // hardcoded and known
try
 {
 monitor.beginTask(total * scale)

 // item 1
 this.doPart1()
 monitor.worked(1 * scale)

 // item 2
 this.doPart2(new SubProgressMonitor(monitor, 1 * scale)) // allot 1 item
 monitor.worked(1 * scale) // WRONG! Not needed, already managed by the SubProgressMonitor

 // item 3
 this.doPart3()
 monitor.worked(1 * scale)
 } finally {
 monitor.done()
 }

You should just leave out the second call to worked().

Never pass IProgressMonitor.UNKNOWN (or any other negative value) when creating a SubProgressMonitor() wrapper!

FlexGantt - Policies & Commands Page 36

A situation I just the other day experienced was when doing an IProgressMonitor.UNKNOWN number of things - I
needed to call a subtask, and hence I set up to call it using a SubProgressMonitor(parent, subticks) but I realized that I
hadn't ever considered how the sub monitor should be created - how many subticks it should be given - in the unknown
case. I figured it should be ok to pass IProgressMonitor.UNKNOWN there also. However, when later trying my code I
saw to my horror that my progress bar went backwards! Not the effect I figured on...

As it turns out, this is because the implementation (as of Eclipse 3.2M3) blindly uses the incoming ticks as a scaling fac-
tor. However, it goes haywire when it receives a negative value (and IProgressMonitor.UNKNOWN happens to have a
value of -1). It does computations with it, and it ends up calling worked() with negative values which my monitor tried to
process...that code is now fixed to be more resilient in such cases. I've filed bug #119018 to request that SubProgress-
Monitor handles it better and/or document that negative values is a bad idea for the constructor call.

Whatever, passing IProgressMonitor.UNKNOWN is incorrect in any case. If you have called beginTask()
using IProgressMonitor.UNKNOWN you can gladly pass in any reasonable tick value to a SubProgressMonitor, it will
give the correct result.

Ensure to always complete your monitor!
Consider the concept described in the previous section: the important thing here is that basically, you say that you have
three distinct and logical things to do, and then you tick them off - but one of the ticks is actually farmed out to a subtask
through a SubProgressMonitor. You don't really know how many distinct and logical things the subtask has to do, nor
should you care. The mechanics of using a SubProgressMonitor makes the advancement of one of your ticks happen in
the correct way. So, the end expectation is that once you reach the end of your three things, the monitor you have, have
actually fulfilled the count you intended - the internal state of it should reflect this: "the user said three things should hap-
pen and my work count is now indeed '3'".

But, as I recently found out, this can fail. Specifically, I blindly invoked IProject.build() on a project which had no builders
configured. To this method I sent in a SubProgressMonitor and allotted it one 'tick' of mine. But, as it turned out, internally
it never used the monitor it got, presumably because there was no work to perform - not very unreasonable in a sense.
However, this did have the effect that one of my ticks never got, well, 'tocked' :-). I could solve this specific problem by
simply checking if there was any builders configured, and if there were none, I simply advanced the tick by worked(1)
instead. But, it requires me, the caller, to make assumptions on the internal workings of the subtask, which is never good.

This is not a huge problem of course. But, I think it would make sense to always act the same. The code resulting from
IProject.build() could just call beginTask("", countOfBuilders) regardless of if countOfBuilders was 0, iterate over the
empty array or whatever, and then call done(). This would correctly advance my tick.

Cancellation
The sample code above does not show cancellation checks. However, it is obviously recommended that users of a pro-
gress monitor actively check for cancellation to timely break out of the operation. The more (potentially) long-running, the
more important of course. And remember: you don't know if the operation is running in a context that allows it to be can-
celed or not - so you just have to code defensively. A sample of how it should look could be this:

monitor = … // somehow get a new progress monitor which is in a pristine state
try
 {
 monitor.beginTask(thingyList.size())

 for (Thingy t : thingyList)
 {
 if(monitor.isCanceled())
 throw new OperationCanceledException();
 t.doSomething()
 monitor.worked(1)
 }
 } finally {
 monitor.done()
}

The NullProgressMonitor
A common pattern is to allow callers to skip sending a monitor, i.e. sending ʻnullʼ. A simple and convenient way to deal
with such calls is this:

Page 37 FlexGantt - Policies & Commands

public void doIt(IProgressMonitor monitor) {
 // ensure there is a monitor of some sort
 if(monitor == null)
 monitor = new NullProgressMonitor();

 try {
 monitor.beginTask(thingyList.size())

 for (Thingy t : thingyList)
 {
 if(monitor.isCanceled())
 throw new OperationCanceledException();
 t.doSomething()
 monitor.worked(1)
 }
 } finally {
 monitor.done()
 }
}

Conclusion
I believe that by diligently following these rules and patterns, you will never have a problem in using the progress monitor
mechanism. Obviously, it requires implementations to follow the contract as well. But remember, if you mistreat the pro-
tocol you will sooner or later end up talking to a progress monitor implementation that is stern and will simply throw an
exception or give strange visual effects if you call itʼs beginTask() one time too many. Itʼs essentially valid if the IPro-
gressMonitor interface description is to be believed – and you will get blamed by your customer…

FlexGantt - Policies & Commands Page 38

