
FlexGantt - Release 1
Layers, Layer Container, Layer Factory

Dirk Lemmermann Software & Consulting
Asylweg 28
8134 Adliswil
Switzerland
www.dlsc.com

All rights reserved.
Java is a trademark registered ® to Sun Microsystems
http://java.sun.com

http://www.dlsc.com
http://www.dlsc.com
http://java.sun.com
http://java.sun.com

The image on the title page shows the application „PlanningForce“, which makes heavy use of FlexGantt. For more in-
formation on this product go to http://www.planningforce.com

FlexGantt Release 1.1.2

Document last updated on October 1st, 2008

http://www.planningforce.com
http://www.planningforce.com

Table of Content
Layer Container 1

Model vs. UI Layer 1

Layer Ordering 1

Layer Lookup 2

Layer Selector Support 2

Overview / Radar Selector Support 2

Highlighting 3

Selection Models 4

Layer Factory 4

Layer Policies 5

Layer Features 5

System Layers 7
Background Layer 8

Calendar Layer 8

Crosshair Layer 9

DatelineLayer 9

DragLayer 9
Cursors 10
Edit Modes / Edit Mode Controller 12

EditingLayer 13

EventlineLayer 13

GridLayer 14

LabelLayer 14

LassoLayer 15
Lasso Modes 15
Cursors 16
Selection Behaviour 17

PopupLayer 18

RelationshipLayer 18

RowLayer 19

SelectionLayer 19

TimeNowLayer 19

Timeline Object Layers 20

Custom Layers 21

Frequently Asked Questions (FAQ) 24
How can I change the transparency of a layer? 24

How can the layer transparency be updated in real-time when using the slider in the layer selector? 24

How can I use different colors for different layers? 24

Is it possible to remove the layer UI / layer palette / layer selector? 25

How many layers can a Gantt chart display? 25

Layer Container
The right-hand side of every Gantt chart is a layer container. This container gets created by the component factory of the
Gantt chart. The following image depicts the structure of the layer container and shows how the container is composed of
a stack of layers. The layer container manages three different types of layers that are supported by the framework: sys-
tem layers, timeline object layers, and custom layers.

Layer Stack

System layers are non-optional layers required by the framework. They provide the various features supported by the
Gantt chart. Timeline object layers are responsible for rendering activities and events (the data). Custom layers are used
to extend the feature list to meet application-specific requirements.

Model vs. UI Layer
When reading about layers and the layer container it is important to understand the difference between model layers and
user interface (UI) layers. Model layers are provided by the Gantt chart model. The IGanttChartModel interface defines a
method called getLayers(). This method returns an iterator over ILayer instances. Each one of these ILayer instances will
result in the creation of a timeline object layer, which is a UI layer that will be added to the layer container. UI layers have
graphical attributes while model layers only carry data and features requests.

Layer Ordering
The layers approach found in FlexGantt is very similar to the one used in graphics applications. These applications have
many things in common but the one thing that can always be found is different ways of changing the order of layers. It is
only logical that FlexGantt supports the same feature. The following table lists the available operations:

Method Description

void moveBack(ILayer) Moves the given layer behind the layer that is currently shown below it.

void moveForward(ILayer) Moves the given layer in front of the layer that is currently shown above it.

void moveToBack(ILayer) Moves the given layer all the way to the back. All other layers will be drawn on top.

void moveToFront(ILayer) Moves the given layer all the way to the front. All other layers will be drawn below.

void hideLayer(ILayer) Hides the given layer. The layer becomes invisible.

void showLayer(ILayer) Shows the given layer. The layer becomes visible.

It should be noted that these operations are only available for timeline object and for custom layers. System layers ap-
pear in a fixed order, which gets determined by two protected methods of LayerContainer. This default order can be

Page 1 FlexGantt - Layers

changed by overriding these methods. For more information on this topic, please refer to the chapter called „System
Layers“.

Layer Lookup
Layers are not „manually“ added to or removed from the layer container. Instead the LayerContainer class manages the
life-cycle of layers. For the layer creation it delegates to a layer factory. After the layers have been created the container
owns them. The following methods are available for layer access:

Method Description

<T extends AbstractSystemLayer> T
 getSystemLayer(Class<T> layerType)

Returns the system layer instance that was created for the
given system layer type.

TimelineObjectLayer getTimelineObjectLayer(
 ILayer)

Returns the timeline object layer instance that was created for
the given model layer instance.

AbstractCustomLayer getCustomLayer(
 ILayer)

Returns the custom layer instance that was created for the
given model layer instance. This method will only work if the
model layer is a custom model layer.

boolean ILayer.isCustomLayer()

It is important to know that the LayerContainer recreates its layer stack after certain events have occurred on the Gantt
chart model1. Hence, applications should not keep references to the layers for a longer period of time.

Layer Selector Support
The layer container stores an icon map used to retrieve icons for layers. These icons can then be used in other Flex-
Gantt components like the LayerPalette / LayerSelector. The ILayer class can not provide an icon by itself, since the
model and the UI are supposed to be in different classes2.

Layer Selector / Layer Palette

Method Description

Icon getLayerIcon(ILayer)
void setLayerIcon(ILayer, Icon)

Sets / gets an icon for the given layer. FlexGantt registers a
default icon, which gets retrieved from the IconRegistry via the
key IconID.LAYER.

Overview / Radar Selector Support
The overview selector implements a radar-like feature, which provides an overview over the entire data currently stored
in the Gantt chart model. Each timeline object gets shown as a thin line or a small dot. To add a little bit more meaning to
this kind of representation the application developer can map different colors and icons to so-called „status“ objects. A
good example for a status object is the value of an enumerator, which lists the different states that a timeline object can
be in.

FlexGantt - Layers Page 2

1 See GanttChartModelEvent.ID.LAYER_ADDED or GanttChartModelEvent.ID.LAYER_REMOVED.

2 Model View Controller concept (MVC) / Separation of Concerns (SoC)

public enum Status {
 NEW,
 PLANNED,
 EXECUTED,
 ARCHIVED
}

The values of this enumerator can then be used to register the colors and icons:

layerContainer.setTimelineObjectStatusColor(Status.NEW, Color.WHITE);
layerContainer.setTimelineObjectStatusColor(Status.PLANNED, Color.RED);
layerContainer.setTimelineObjectStatusColor(Status.EXECUTED, Color.GREEN);
layerContainer.setTimelineObjectStatusColor(Status.ARCHIVED, Color.GRAY);

//
// Only display an icon for new timeline objects.
//
layerContainer.setTimelineObjectStatusColor(Status.NEW, new NewIcon());

The status objects can then be set on the timeline objects:

DefaultTimelineObject tlo = new DefaultTimelineObject();
tlo.setStatusObject(Status.NEW);

These settings will cause the overview selector to display the timeline objects in four different colors depending on their
state. Those timeline objects that are new will also show an icon, which will make it easy for the user to navigate to them
and to perform some kind of scheduling action on them.

Method Description

Icon getTimelineObjectStatusIcon(Object)
void setTimelineObjectStatusIcon(Object, Icon)

Gets or sets an icon for the given status object.

Color getTimelineObjectStatusColor(Object)
void setTimelineObjectStatusColor(Object)

Gets or sets a color for the given status object.

Highlighting
An extremely helpful feature provided by the LayerContainer is its ability to highlight timeline objects. Highlighting means
that one or more timeline objects will be drawn in two different ways, which will cause them to blink. Making them blink
will force the userʻs attention on them. Highlighting is implemented as a specialized thread (inner class HighlightThread),
which periodically puts the layer container into two different states and then calls its repaint() method. The two states are
passed to the timeline object renderers. This way the renderers can draw the highlight feedback. The default renderer
implementations simply use different colors for the two states. This is sufficient to make then blink. The following code
fragment is taken from the DefaultTimelineObjectRenderer class. The method paints the content of an activity (bar):

/**
 * Renders the timeline object if it is an activity (different start and end
 * time = duration).
 */
protected void paintActivityContent(Graphics g) {
 int w = getWidth() - 1;
 int h = getHeight() - 1;
 Graphics2D g2d = (Graphics2D) g;
 if (highlighted) {
 g2d.setPaint(new GradientPaint(0, 0, highlightFillColor1, 0, h / 2,
 ́ highlightFillColor2));
 } else if (selected) {
 g2d.setPaint(new GradientPaint(0, 0, selectionFillColor1, 0, h / 2,
 selectionFillColor2));
 } else {
 g2d.setPaint(new GradientPaint(0, 0, activityFillColor1, 0, h / 2,
 activityFillColor2));
 }
 ... more drawing going on here
}

The „highlighted“ flag was set in the getTimelineObjectRendererComponent() method of the renderer. The following table
lists the methods related to highlighting:

Page 3 FlexGantt - Layers

Method Description

void addHighlightedObject(
 TimelineObjectPath path)

Adds a timeline object path to the list of highlighted objects. The
layer container will automatically start the highlighting thread.

void addHighlightedObjects(
 Collection<TimelineObjectPath> paths)

Adds several timeline object paths at the same time. The layer
container will automatically start the highlighting thread.

void removeHighlightedObjects(
 Collection<TimelineObjectPath> paths)

Removes a timeline object path from the list of highlighted ob-
jects. The layer container automatically stops the highlighting
thread if the list is now empty.

void clearHighlightedObjects() Clears the list of highlighted timeline objects. The highlighting
thread will be stopped automatically.

boolean isHighlighted(
 TimelineObjectPath path)

Determines if the given timeline object is a member of the list of
highlighted objects.

void setHighlighting(boolean b) Turns highlighting on and off. This method gets called by the high-
light thread with the alternating values „true“ and „false“.

boolean isHighlighting() Determines if the layer container is currently in the second mode
„highlight“.

long getHighlightingDelay();
setHighlightingDelay(long delay)

Gets / sets the delay between two calls of the highlighting thread
to setHighlighting(boolean). The lower this value, the higher the
blink frequency.

Some notes:

• The layer container automatically starts or stops the highlight thread whenever a timeline object path gets added to or
removed from the list of highlighted paths.

• The highlight feature is used by the Gantt chart when it tries to show a „message context“. If the message is of type
TimelineObjectPathMessage then the timeline object path stored in the message object will be passed to the layer
containerʻs addHighlightedObject(TimelineObjectPath) method.

• Highlighting will only be visible if the renderers support it. Please make sure that your renderers make use of the „high-
lighted“ flag passed to them.

Selection Models
The layer container manages the selection models used for the timeline object layers. This is due to the fact that the UI
layers for the model layers are very volatile. They can be created and deleted after model changes but the selections
should remain the same. This is why the layer container manages a map of selection models where the model layers are
used as the key.

Method Description

ITimelineObjectLayerSelectionModel
 getSelectionModel(ILayer layer)
void setSelectionModel(ILayer,
 ITimelineObjectLayerSelectionModel)

Gets / sets the selection model for the given layer.

Layer Factory
The layer container delegates the creation of layers to a layer factory, which needs to implement the ILayerFactory inter-
face. A default factory (DefaultLayerFactory) is included and will be sufficient for most applications. However, there are
reasons why an application might choose to provide its own factory: to have a single point in the application where layers
get configured, to use subclasses of the built-in layers or to use custom layers. The following code shows the factory
definition:

FlexGantt - Layers Page 4

http://www.flexgantt.com/products/flexgantt/manual/developers/components/layercontainer/layercontainer.html
http://www.flexgantt.com/products/flexgantt/manual/developers/components/layercontainer/layercontainer.html

/**
 * Layer factories are used by layer containers in order to create the actual
 * user interface components for the various system layers, object layers,
 * and custom layers.
 */
public interface ILayerFactory {

 /**
 * Creates a new system layer. The creation of all system layer types must
 * be supported (all subclasses of AbstractSystemLayer).
 */
 <T extends AbstractSystemLayer> T createSystemLayer(LayerContainer lc,
 Class<T> layerType);

 /**
 * Creates a new timeline object layer to be used for rendering timeline
 * objects.
 */
 TimelineObjectLayer createTimelineLayer(LayerContainer lc, ILayer layer);

 /**
 * Creates a new custom layer to be used for rendering custom information.
 */
 AbstractCustomLayer createCustomLayer(LayerContainer lc, ILayer layer);
}

The method, which creates the system layers is rather restricted. The method has to guarantee that the layer created by
it is of the type passed to it. The method is not allowed to return null. The method, which creates custom layers will only
be called if ILayer.isCustomLayer() returns „true“.

Applications that want to replace the default layer factory need to pass their own factory to the constructor of the Layer-
Container class. The layer container itself gets created by the component factory of the Gantt chart, hence replacing the
default layer factory also requires replacing the default component factory. The following code fragment shows a custom
component factory using a custom layer factory:

public class CustomComponentFactory extends DefaultComponentFactory {

 /**
 * Creates a layer container that uses a custom layer factory.
 */
 @Override
 public LayerContainer createLayerContainer(AbstractGanttChart gc,
 TreeTable table, IGanttChartModel model) {
 return new LayerContainer(gc, model, table, new CustomLayerFactory());
 }
}

This custom component factory can then be passed to the constructor of the Gantt chart.

GanttChart gc = new GanttChart(new CustomComponentFactory());

Layer Policies
The layer container provides all policies required by its layers. The container owns a policy provider instance (IPolicyPro-
vider, see „FlexGantt - Policies & Commands“) that will be used for storing and retrieving policies based on policy inter-
faces. Many layers use these policies to control their behaviour and / or appearance. The popup layer for example looks
up a policy of type IPopupPolicy and then looks up a popup value object from the policy for a given timeline object. The
type of this value object is used to lookup a popup renderer that will ultimately perform the rendering of the popup win-
dow.

Layer Features
The behaviour of several FlexGantt components can be controlled by the model layer instances themselves. The ILayer
interface defines a method called isFeatureEnabled(Feature). The available features are defined in the enumerator Fea-
ture. The default ILayer implementation Layer defines methods to add and remove features to and from the layer.

public void Layer.addFeature(Feature);
public void Layer.removeFeature(Feature);

Page 5 FlexGantt - Layers

The following table lists the Feature enumerator values:

Feature Description

DELETION If enabled allows the user to delete the layer from the Gantt chart. A „delete“
icon will be visible in the layer selector.

Delete Icons

OVERVIEW If enabled considers the layer for the overview / radar selector. The timeline
objects shown in the layer will be visible in the radar.

Overview / Radar

RELATIONSHIPS If enabled will cause the RelationshipLayer to draw the relationships defined in
the Gantt chart model for the timeline objects shown on this layer.

Relationship

SHOW_IN_PALETTE If enabled will cause the layer selector to list the layer. See screenshot for fea-
ture DELETION.

TIMELINE_OBJECT_CREATION The LassoLayer will consider the layer for timeline object creation. The Lasso-
Layer will show a layer selection dialog when the user creates a new timeline
object only if several timeline object layers enable this feature. If only one layer
has this feature enabled the timeline object will automatically be created on
that layer.

TIMELINE_OBJECT_DESCRIPTIONS The LabelLayer will only attempt to draw labels next to a timeline object if its
layer enabled this feature.

Labels

TRANSPARENCY If this feature is enabled it will cause the LayerSelector to display a transpar-
ency slider next to the layerʻs name.

Transparency Sliders

FlexGantt - Layers Page 6

System Layers
System layers are non-optional layers that are required by the Gantt chart in order to work properly. The number of
system layers is fixed. Each one of these layers implements a small set of features that the framework guarantees to be
available. The TimeNowLayer for example draws a vertical line at the location of the current system time. The layer
container manages an upper and a lower stack of system layers. Timeline object layers and custom layers are placed
between these two stacks. The stacks and the ordering of the system layers within the stacks are controlled by two
methods of the layer container:

protected List<Class<? extends AbstractSystemLayer>> getTypesOfUpperSystemLayers();
protected List<Class<? extends AbstractSystemLayer>> getTypesOfLowerSystemLayers();

The following is a list of all system layers. Some of them can be turned on or off, depending on whether the feature that
they support is currently enabled or not.

Layer Description

BackgroundLayer Fills the background of the layer container with a solid color or a texture (optional alternat-
ing row colors).

CalendarLayer Draws the information returned from the calendar model (weekends, holidays) via the help
of ICalendarEntryRenderer instances.

public void AbstractGanttChart.setCalendarVisible(boolean)

CrosshairLayer Draws a crosshair that can be used in training sessions.

public void AbstractGanttChart.setCrosshairVisible(boolean)

DatelineLayer Fills the currently focused time span with a transparent color. Also visualizes the bounds of
the horizon of the timeline. These bounds will only become visible after some zooming op-
erations (e.g. user scrolled to the end of the horizon and then zoomed out).

DragLayer Performs anything related to drag & drop operations. Renders the dragged timeline object.
Fills the background of all rows via the IDragRowRenderer instances.

EditingLayer Handles in-place editing of timeline objects.

EventlineLayer Draws the time spans and time points of eventline activities / events inside the layer con-
tainer.

GridLayer Draws the vertical grid lines.

public void AbstractGanttChart.setGridLineMode(GridLineMode)
public void AbstractGanttChart.setVerticalLinesOnTop(boolean)

LabelLayer Draws the text labels next to the timeline objects.

public void AbstractGanttChart.setLabelsVisible(boolean)

LassoLayer Shows the lasso when the user performs a selection with the control key down.

PopupLayer Renders little popup windows with detailed information about a timeline object.

RelationshipLayer Draws lines connecting two timeline objects if a relationship exists between them.

RowLayer Renders the background of individual rows via the help of IRowRenderer instances.

SelectionLayer Fills selected time spans with a solid color.

TimeNowLayer Draws a vertical line at the location of the current system time.

public void AbstractGanttChart.setTimeNowVisible(boolean)

Page 7 FlexGantt - Layers

Background Layer
As its name already indicates the background layer is responsible for drawing the background of the layer container. In
many situations this will simply be a rectangle filled with the background color of the layer container itself. If an applica-
tion also specifies an alternating background color on the layer container then the layer will fill a rectangle with this color
in every odd row. This greatly increases the readability of the Gantt chart. The transparency of the alternating back-
ground color can be controlled by the layerʻs alpha value.

For even higher customization the background layer will also accept a texture image that will be drawn as tiles until it fills
the entire background. This is a nice feature for creating a certain them (e.g. a soccer scheduling application might show
grass in the background). The tree table matches several of the methods of the background layer so that the left-hand
side and the right-hand side can be drawn consistently.

The following image shows a snapshot of the "Textures" demo application. In this demo the user can select a texture
from a palette of available textures. The selected texture image gets assigned to the background layer via a call to:

void BackgroundLayer.setTexture(Image img);

Texture Demo Application

Related API:

void LayerContainer.setBackground(Color col)
void LayerContainer.setAlternatingBackground(Color col)
void TreeTable.setAlternatingBackground(Color col)
void TreeTable.setTexture(Image img)
void AbstractLayer.setAlpha(float alpha)

Calendar Layer
Every Gantt chart can have a calendar model attached to it. This model returns calendar entries, which represent things
like weekends or holidays. These entries are visualized by the calendar layer via the help of renderers, which have to
implement the ICalendarEntryRenderer interface. A renderer component will always reach from the very top of the layer
container to the very bottom. Its start location (x-coordinate) and its width are dependent on the start and end time of the
calendar entry that they represent. The layer has been setup to gray out Saturdays and Sundays (weekends).

Related API:

void CalendarLayer.setCalendarEntryRenderer(Class entryType, ICalendarEntryRenderer renderer);
ICalendarModel AbstractGanttChart.getCalendarModel();
TimeGranularityCalendarModel
WeekendCalendarEntry
HolidayCalendarEntry

FlexGantt - Layers Page 8

Crosshair Layer
The crosshair layer draws a crosshair at the current mouse location. This feature is especially useful when giving a dem-
onstration of the Gantt chart. The crosshair will only be visible if it has been turned on. A pre-defined action called Cross-
hairAction is available for toggling the visibility of the crosshair. The layer uses the ICrosshairPolicy to lookup four differ-
ent labels that will be shown in the four corners of the crosshair. Several methods are available on the layer that can be
used to customize the appearance of the crosshair (radius, fill color, line color, text color).

Crosshair

Related API:

void AbstractGanttChart.setCrosshairVisible(boolean);
ICrosshairPolicy
CrosshairAction

DatelineLayer
The dateline layer visualizes the time span that currently has the focus in the dateline so that the user can more easily
identify the timeline objects that intersect with this span. The focused time span is the time span between two major or
minor grid locations, depending on whether the mouse cursor hovers over the upper or the lower part of the dateline. The
dateline layer will draw a semi-transparent rectangle from the top to the bottom of the layer container. The transparency
of the rectangle can be controlled with the layerʻs alpha value. The layer will draw the same rectangle when the user per-
forms a time span selection in the dateline.

Focused Time Span

Related API:

ITimeSpan Dateline.getFocusedTimeSpan();
void DatelineLayer.setFocusedTimeSpanFillColor(Color);
void DatelineLayer.setFocusedTimeSpanLineColor(Color);
void DatelineLayer.setFocusedTimeVisible(boolean);
void AbstractLayer.setAlpha(float);

DragLayer
The drag layer handles all interaction and visualization required in order to support drag & drop operations on timeline
objects. The layer uses various policies to determine ...

• if an object can be dragged from one row to another (IDragAndDropPolicy)

• if the duration of an object can be changed (IEditTimelineObjectPolicy)

• if the start time of an object can be changed (IEditTimelineObjectPolicy)

• if the „percentage complete“ value of an activity object can be edited (IEditActivityObjectPolicy)

• if the „capacity used“ value of a capacity object can be edited (IEditCapacityObjectPolicy)

Page 9 FlexGantt - Layers

Additonally the IDragInfoPolicy is used to lookup a drag info object that contains the information that shall be displayed in
the drag info popup. An IDragInfoRenderer instance gets used to visualize this information.

Drag Info

Another rather advanced feature provided by the drag layer is the ability to change the background of rows when the
user performs a drag and drop operation. Renderers of type IDragRowRenderer are invoked only during a drag. They
can make their own contribution to the row background. The renderer DefaultDragRowRenderer for example, covers the
regular background with a semi-transparent gray color to indicate that a drop is not valid at the current mouse location.
Many applications use this feature to provide feedback to the user about the quality of a row as a drop location by filling
the background with different colors (red, yellow, green).

Related API:

IDragAndDropPolicy
IDragInfoPolicy
IDragInfoRenderer
IDragRowRenderer
DefaultDragInfoRenderer
DefaultDragRowRenderer
IEditTimelineObjectPolicy
IEditActivityObjectPolicy
IEditCapacityObjectPolicy

Cursors
The drag layer uses different cursor shapes to indicate the available editing options at the current mouse cursor location.
The following table lists the icons and their meaning:

Icon Icon ID Description

CURSOR_CHANGE_START_TIME Shown when the mouse cursor hovers over the left edge of the timeline
object and the user can change the start time of the object.

Related API:

boolean IEditTimelineObjectPolicy
 .isStartTimeChangeable(TimelineObjectPath,
 IGanttChartModel);
ITimelineObject.isStartTimeChangeable();

CURSOR_CHANGE_END_TIME Shown when the mouse cursor hovers over the right edge of the timeli-
ne object and the user can change the duration of the object.

Related API:

boolean IEditTimelineObjectPolicy
 .isDurationChangeable(TimelineObjectPath,
 IGanttChartModel);
ITimelineObject.isDurationChangeable();

CURSOR_MOVE Shown when mouse cursor hovers over the center of the timeline ob-
ject and the user can move the timeline object left and right and from
one row to another. How the layer determines this option is described
above for the MOVE_VERTICAL / HORIZONTAL cursors.

FlexGantt - Layers Page 10

Icon Icon ID Description

CURSOR_EDIT_CAPACITY Shown when the mouse cursor hovers over the top edge of a capacity
object and the user can change the „capacity used“ value of the ob-
ject.

Related API:

boolean IEditCapacityObjectPolicy
 .isCapacityChangeable(TimelineObjectPath,
 IGanttChartModel);
boolean ICapacityObject.isCapacityChangeable();

CURSOR_EDIT_PERCENTAGE Shown when the mouse cursor hovers over the left edge of an activity
object and the user holds down the SHIFT key and changing the „per-
centage used“ value of the object is allowed.

Related API:

boolean IEditActivityObjectPolicy
 .isPercentageChangeable(TimelineObjectPath,
 IGanttChartModel);
boolean IActivityObject.isPercentageChangeable();

It should be noted that the behaviour described in the table is based on the use of the default edit mode controllers for
timeline objects, capacity objects, and activity objects. More information on the edit mode controller is provided later in
the chapter „Edit Mode Management“.

The drag layer retrieves all cursor icons from the IconRegistry via the given ID. The easiest way to replace these cursors
is to register new icons by calling IconRegistry.setIcon(IconID, Icon). Another option is to subclass the DragLayer class
and override the createEditModeCursor(EditMode) method. The default implementation of this method is shown here:

/**
 * Factory method for the cursors of the various edit modes. The method
 * looks up the cursors from the {@link IconRegistry} via the following
 * identifiers:
 *
 * {@link IconId#CURSOR_EDIT_CAPACITY }
 * {@link IconId#CURSOR_EDIT_PERCENTAGE }
 * {@link IconId#CURSOR_CHANGE_START_TIME }
 * {@link IconId#CURSOR_CHANGE_END_TIME }
 * {@link IconId#CURSOR_MOVE_HORIZONTAL }
 * {@link IconId#CURSOR_MOVE_VERTICAL }
 * {@link IconId#CURSOR_MOVE }
 *
 * The hotspot for the cursors is always (16, 16) except for the percentage
 * complete cursor (31, 15).
 *
 * @param mode
 * the edit mode for which to create a cursor
 * @return a cursor for the given edit mode
 * @since 1.0
 */
protected Cursor createEditModeCursor(EditMode mode) {
 IconId id = null;
 Point hotSpot = new Point(16, 16);
 switch (mode) {
 case CHANGE_CAPACITY:
 id = IconId.CURSOR_EDIT_CAPACITY;
 break;
 case CHANGE_PERCENTAGE_COMPLETE:
 id = IconId.CURSOR_EDIT_PERCENTAGE;
 hotSpot = new Point(31, 15);
 break;
 case CHANGE_START_TIME:
 id = IconId.CURSOR_CHANGE_START_TIME;
 break;
 case CHANGE_END_TIME:
 id = IconId.CURSOR_CHANGE_END_TIME;
 break;
 case CHANGE_TIME_SPAN:
 id = IconId.CURSOR_MOVE_HORIZONTAL;
 break;
 case CHANGE_NODE:

Page 11 FlexGantt - Layers

 id = IconId.CURSOR_MOVE_VERTICAL;
 break;
 case CHANGE_NODE_AND_TIME_SPAN:
 id = IconId.CURSOR_MOVE;
 break;
 case NONE:
 default:
 return Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR);
 }
 ImageIcon icon = (ImageIcon) IconRegistry.getIcon(id);
 return Toolkit.getDefaultToolkit().createCustomCursor(icon.getImage(),
 hotSpot, mode.toString());
}

Edit Modes / Edit Mode Controller
The table above describes the various cursors shown when the mouse cursor hovers over certain parts of a timeline
object. It is important to know that this behaviour is based on the default editor mode controllers registered on the drag
layer. Application developers are free to provide their own edit mode controllers to fine-tune the behaviour of their appli-
cation. Edit mode controllers have to implement the IEditModeController interface, which primarily consists of just one
method:

EditMode getEditMode(DragLayer layer, ObjectBounds bounds, MouseEvent evt);

It is up to this method to determine the mode into which the layer will be put. The given object bounds are a complete
description of the location of a timeline obect. The mouse event is the event that triggered the method call.

FlexGantt maps several default edit mode controllers to default model classes. They are listed in the following table:

Model Class Edit Mode Controller

Object DefaultEditModeController

DefaultCapacityObject CapacityObjectEditModeController

DefaultActivityObject ActivityObjectEditModeController

Possible edit modes are listed in the EditMode enumerator:

Edit Mode Description

CHANGE_CAPACITY Only used by the CapacityObjectEditModeController. This feature is useful if the
user wants to interactively change the „capacity used“ value of a capacity object.

CHANGE_END_TIME Allows the user to change the duration of a timeline object. This will change the
duration / the time span of the object.

CHANGE_NODE Allows the user to move the timeline object between rows. This is considered a
drag and drop operation and will result in calls to the IDragAndDropPolicy.

CHANGE_NODE_AND_TIME_SPAN Allows the uer to move the timeline object from one row to another and also to the
left or the right. In this edit mode the user can drop the timeline object anywhere.

CHANGE_PERCENTAGE_COMPLETE Only used by the ActivityObjectEditModeController. This feature is useful if the
user wants to interactively change the „percentage complete“ value of an activity
object.

CHANGE_START_TIME Allows the user to change the start time of a timeline object. This will change the
duration / the time span of the object.

CHANGE_TIME_SPAN Allows the user to move the timeline object to the left and the right. This mode
does not affect the duration of the timeline object.

NONE This value indicates that no editing operation is available at the given mouse
location

FlexGantt - Layers Page 12

EditingLayer
The editing layer is responsible for displaying editors for in-place editing of timeline objects. If an editor is registered for a
certain type of timeline object then this editor will be added to the layer when the user performs a double click on the
object.

Editors are registered on the LayerContainer class and not on the layer itself. This is due to the fact that system layers
are sometimes recreated after certain changes in the Gantt chart model:

void LayerContainer.setTimelineObjectEditor(Class objectType, ITimelineObjectEditor editor);
ITimelineObjectEditor LayerContainer.getTimelineObjectEditor(Class objectType);

FlexGantt ships with two built-in editors, one for timeline objects of type DefaultTimelineObject and one for objects of
type DefaultActivityObject. Both of them subclass AbstractTimelineObjectEditor. It is highly recommended that applica-
tion developers do the same if they have to implement their own editors.

Default Timeline Object Editor

Default Activity Object Editor

Related API:

ITimelineObjectEditor
AbstractTimelineObjectEditor
DefaultTimelineObjectEditor
DefaultActivityObjectEditor
void EditingLayer.setTimelineObjectEditor(ITimelineObjectEditor editor);

EventlineLayer
The eventline layer picks up eventline activities and events from the eventline (model) and visualizes them in the layer
container. Activities are shown as filled rectangles and events as vertical lines, both of them reaching from the top to the
bottom of the layer container. Different strokes and paints can be specified for different eventline objects.

Related API:

void EventlineLayer.setPaint(Class eventlineObjectType, Paint paint);
void EventlineLayer.setStroke(Class eventlineObjectType, Paint paint);

Page 13 FlexGantt - Layers

GridLayer
The grid layer is responsible for drawing the vertical and horizontal grid lines. The locations of the horizontal grid lines
are calculated based on the location of the rows and their individual heights. The locations of the vertical grid lines can
be retrieved from the dateline model.

The grid layer can display the grid in different modes: no grid, minor grid, major grid, combined grid. In most cases the
minor and the major grid lines can be shown at the same time because the major grid lines are usually on top of a minor
grid line. But there are situations where this is not the case, for example when the timeline shows the major granularity
'months' and the minor granularity 'weeks'. The appearance of the grid lines would be visually unpleasant with major grid
lines between two minor grid lines, sometimes closer to the left or the right line. To avoid this the grid layer uses a special
policy called IGridLinePolicy. The layer queries this policy for the visibility of the major and minor grid lines. The currently
used dateline model gets passed to the policy's methods as the results are dependent on it.

Major and Minor Grid Lines

Related API:

GridAction
GridLineMode
List<GridLine> IDatelineModel.getGrid(int x1, int x2, boolean major);
void AbstractGanttChart.setGridLineMode(GridLIneMode);
IGridLinePolicy

LabelLayer
The label layer's only purpose is to draw descriptions next to timeline objects. A description text will only show up if the
label policy returns one for the timeline object, if the timeline object layer on which the timeline object is located has the
description feature turned on, and if the Gantt chart has labels turned on.

Labels

Example:

DefaultTimelineObject tlo = new DefaultTimelineObject();
tlo.setLabel(LabelType.DESCRIPTION, "Steve Smith, Dirk Lemmermann")

Related API:

ILabelPolicy
String ITimelineObject.getLabel(LabelType);
void DefaultTimelineObject.setLabel(LabelType, String);
boolean ILayer.isFeatureSupported(Feature);
void AbstractGanttChart.setLabelsVisible(boolean);

FlexGantt - Layers Page 14

LassoLayer
The lasso layer provides the necessary infrastructure to display a selection lasso, which is basically a rectangle that gets
created when the user performs a mouse drag operation (pressing the SHIFT or the CTRL key while dragging allows for
multiple selections). The layer can be configured to either select the timeline objects with which the lasso intersects or
the time span represented by the start and width of the rectangle. Selected timeline objects are added to the selection
model3 of the timeline object layer on which they are displayed4. Selected time spans are added to the selection model5
of the layer container.

Timeline Object Lasso

Lasso Modes
The lasso layer can be used in four different modes, which are listed in the enumerator LassoMode:

Lasso Mode Description

SELECT_TIMELINE_OBJECTS The user can use the lasso to select timeline objects. The lasso layer supports seveal
different selection behaviours. Read the chaper „Selection Behaviour“ for more
information on this topic. Selected timeline objects are added to the selection model of
the layer (ITimelineObjectLayerSelectionModel).

SELECT_TIME_SPANS The user can use the lasso to select time spans. Selected time spans are added to the
selection model of the layer container (ILayerContainerSelectionModel). The model
stores the selected time spans for each row / node.

CREATE_TIMELINE_OBJECTS The user specifies a time interval via the help of the lasso. When releasing the mouse
button the lasso layer invokes the IEditTimelineObjectPolicy to determine whether a
timeline object can be created at the given location and which command to use to cre-
ate the object. The lasso layer even supports the creation of timeline objects on se-
veral rows at the same time. This behaviour can be controlled with the setSingleRo-
wObjectCreation(boolean) method of LassoLayer.

CREATE_RELATIONSHIP The user can create a relationship between two timeline objects. The focused timeline
object will be decorated by the layer with four red arrows around its edges. The user
can then click on the focused object and drag to a second one. A line with an arrow
head will be drawn. The line starts at the source timeline object and reaches to the
current mouse cursor location.

Connecting to second timeline object

The lasso layer uses the IRelationshipPolicy to determine, which objects can be the
source or the target of a relationship. The policy also returns the command needed to
create the relationship and add it to the Gantt chart model.

Page 15 FlexGantt - Layers

3 This selection model implements the ITimelineObjectLayerSelectionModel interface.

4 The selection models of the TimelineObjectLayer instances are also managed by the LayerContainer class. See
LayerContainer.getSelectionModel(ILayer)

5 This selection model implements the ILayerContainerSelectionModel interface.

Normally the lasso mode gets set explicitly by calling:

public void LassoLayer.setLassoMode(LassoMode);

However, the CREATE_TIMELINE_OBJECTS mode can be entered by pressing the ALT key.

Cursors
The following table lists the cursors shown by the lasso layer. These cursors always only show up when the mouse cur-
sor hovers over the background of a row but and not over a timeline object.

Icon Icon ID Description

CURSOR_CREATE_RELATIONSHIPS Shows up when the mode of the lasso layer was set to:

LassoMode.CREATE_TIMELINE_OBJECTS

CURSOR_CREATE_TIMELINE_OBJECTS Shows up when the mode of the lasso layer was set to:

LassoMode.CREATE_RELATIONSHIP

CURSOR_SELECT_TIMELINE_OBJECTS Shows up when the mode of the lasso layer was set to:

LassoMode.SELECT_TIMELINE_OBJECTS

CURSOR_SELECT_TIMELINE_OBJECTS_MULTI Shows up when the mode of the lasso layer was set to:

LassoMode.SELECT_TIMELINE_OBJECTS

and the SHIFT or the CTRL key is pressed.

CURSOR_SELECT_TIME_SPANS Shows up when the mode of the lasso layer was set to:

LassoMode.SELECT_TIME_SPANS.

CURSOR_SELECT_TIME_SPANS_MULTI Shows up when the mode of the lasso layer was set to:

LassoMode.SELECT_TIME_SPANS

and the SHIFT or CTRL key is pressed.

The lasso layer retrieves all cursor icons from the IconRegistry via the given ID. The easiest way to replace these cursors
is to register new icons by calling IconRegistry.setIcon(IconID, Icon). Another option is to subclass the LassoLayer class
and override the createLassoCursor(LassoMode, boolean) method. The default implementation of this method is shown
here:

/**
 * Creates a cursor that will be used for the given lasso mode. This method
 * looks up its cursor from the {@link IconRegistry} with the following IDs:
 *
 * {@link IconId#CURSOR_SELECT_TIMELINE_OBJECTS}
 * {@link IconId#CURSOR_SELECT_TIMELINE_OBJECTS_MULTI}
 * {@link IconId#CURSOR_SELECT_TIME_SPANS}
 * {@link IconId#CURSOR_SELECT_TIME_SPANS_MULTI}
 * {@link IconId#CURSOR_CREATE_RELATIONSHIPS}
 * {@link IconId#CURSOR_CREATE_TIMELINE_OBJECTS}
 *
 *
 * @param mode
 * the lasso mode for which to create a cursor
 * @param multi
 * determines if the cursor is needed for a 'multi' operation
 * (multi timeline object selection, multi time span selection)
 * @return a cursor for the given lasso mode
 * @since 1.0
 */
protected Cursor createLassoCursor(LassoMode mode, boolean multi) {
 IconId id = IconId.CURSOR_SELECT_TIMELINE_OBJECTS;
 switch (mode) {
 case SELECT_TIMELINE_OBJECTS:

FlexGantt - Layers Page 16

 if (multi) {
 id = IconId.CURSOR_SELECT_TIMELINE_OBJECTS_MULTI;
 } else {
 id = IconId.CURSOR_SELECT_TIMELINE_OBJECTS;
 }
 break;
 case CREATE_RELATIONSHIP:
 id = IconId.CURSOR_CREATE_RELATIONSHIPS;
 break;
 case CREATE_TIMELINE_OBJECTS:
 id = IconId.CURSOR_CREATE_TIMELINE_OBJECTS;
 break;
 case SELECT_TIME_SPANS:
 if (multi) {
 id = IconId.CURSOR_SELECT_TIME_SPANS_MULTI;
 } else {
 id = IconId.CURSOR_SELECT_TIME_SPANS;
 }
 break;
 }
 ImageIcon icon = (ImageIcon) IconRegistry.getIcon(id);
 return Toolkit.getDefaultToolkit().createCustomCursor(icon.getImage(),
 new Point(15, 15), "lasso_cursor"); //$NON-NLS-1$
}

Selection Behaviour
The way selection works can be highly application-specific. Application developers have to ask the question: „when do I
consider a timeline object to be selected by the lasso?“. FlexGantt assumes that there are three different answers to this
question and lists them in the SelectionBehaviour enumerator:

1. INTERSECTION: a value indicating to the lasso layer that a simple intersection of the bounds of a timeline object
with the bounds of the lasso is sufficient for the selection of the timeline object.

2. TIME_SPAN_CONTAINMENT: a value indicating to the lasso layer that the time span of a timeline object needs to
be completely contained within the time span defined by the lasso in order for the timeline object to become selec-
ted.

3. BOUNDS_CONTAINMENT: a value indicating to the lasso layer that the bounds of a timeline object need to be
completely contained within the bounds of the lasso in order for the timeline object to become selected.

The following diagram illustrates the different selection behaviours. The first row shows the lasso used by the user. The
next three rows show the resulting selections as they would occure for the various selection behaviours.

Selection Behaviour

Related API:

void LassoLayer.setSelectionBehaviour(SelectionBehaviour);
SelectionModeAction
ILayerContainerSelectionModel

Page 17 FlexGantt - Layers

PopupLayer
A bar underneath a timeline is a nice representation for an activity but it can only carry a limited amount of information
due to space restrictions. Popups / annotations / tooltips that show up when the mouse cursor hovers over such a bar is
an excellent feature that can display a wealth of additional information that the planner might need to make a scheduling
decision. FlexGantt's popups can be customized in the same way that any Swing component can be customized. Differ-
ent renderers can be mapped to different types of popup objects. The popup objects are looked up from the IPopup-
Policy. The image below shows the default popup renderer (DefaultPopupRenderer) that displays popup objects in their
serialized form6.

Timeline Object Popup

The popup layer uses the IPopupPolicy to lookup the information shown in the popup. The following two policy methods
are used for this purpose:

Object getPopupValue(TimelineObjectPath path, IGanttChartModel model, boolean extended);
Object getPopupTitleValue(TimelineObjectPath path, IGanttChartModel model, boolean extended);

The idea behind the „extended“ flag is that the application can provide two different types of popups for the same time-
line object. For example one with a higher aggregation level and one with a more detailed view on the data. The user can
toggle between the two popups by pressing the SHIFT key while the popup is shown.

Related API:

void PopupLayer.setPopupRenderer(IPopupRenderer renderer);
IPopupRenderer
DefaultPopupRenderer
Object IPopupPolicy.getPopupValue(Object node, Object timelineObject, IGanttChartModel model);

RelationshipLayer
It is quite common that timeline objects have some kind of relationship with each other. Project planning software for
example often defines constraints between them. Some examples for constraints are: 'start after', 'finish before', 'same
start', 'same end'. FlexGantt can visualize them by drawing lines between them. Each application has its own way of
visualizing them (different colors and / or line styles for different constraints). By plugging in a custom relationship ren-
derer it is possible to implement any kind of relationship rendering.

A relationship between two timeline objects

Related API:

Collection<IRelationship> IGanttChartModel.getRelationships();
Collection<IRelationship> IGanttChartModel.getRelationships(Object timelineObject);
IRelationshipRenderer
IRelationship
IRelationshipPolicy
DefaultRelationship

FlexGantt - Layers Page 18

6 The renderer simply calls Object.toString() on the popup value object and displays the returned text in a JTextArea.

DefaultRelationshipPolicy
DefaultCreateRelationshipCommand
void RelationshipLayer.setLookupStrategy(LookupStrategy strategy);
void RelationshipLayer.setRelationshipRenderer(IRelationshipRenderer);

RowLayer
The row layer can be used to display additional information in each row by registering specialized row renderers. The
renderer lookup is based on the type of the hierarchy / tree node. Row renderers accept a flag, which signals them
whether the row that they are rendering is the current focus owner. This flag will only be supported by the row layer if the
focus support feature is enabled.

Related API:

void RowLayer.setPaintingFocus(boolean);
void RowLayer.setRowRenderer(Object, IRowRenderer);
IRowRenderer

SelectionLayer
The selection layer is responsible for visualizing the currently selected time spans. The selection is managed by the layer
container selection model (ILayerContainerSelectionModel). Selections are drawn as rectangles filled with a paint that
can be specified. Time spans can be selected with the lasso of the LassoLayer when the layer's selection mode has
been set to SelectionMode.SELECT_TIME_SPANS.

Selected Time Spans

Related API:

void SelectionLayer.setSelectionPaint(Paint paint);
void LassoLayer.setSelectionMode(SelectionMode mode);
ILayerContainerSelectionModel LayerContainer.getSelectionModel();

TimeNowLayer
The time now layer draws a vertical line at the location of the 'time now', which is usually the current system time. How-
ever, a Gantt chart can choose to have its own current time. The Gantt chart can choose whether it wants to display the
time now or not. An auto-scroll feature is also available, which will ensure that the time now cursor (vertical line) will al-
ways stay within the visible area, which causes an automatic scrolling of the timeline.

Time Now Marker

The „time now“ will not be updated automatically. It is up to the application to update it. FlexGantt provides a conveni-
ence class called TimeNowThread, which can be used for this purpose. The thread uses a configurable delay to periodi-
cally call Eventline.setTimeNow(long). Applications need to make sure that the thread gets terminated when the Gantt
chart for which it is used gets closed.

Page 19 FlexGantt - Layers

The following code fragments shows the implementation of the threadʻs run() method:

public void run() {
 while (running) {
 try {
 Thread.sleep(delay);
 } catch (InterruptedException e) {
 LOGGER.log(Level.WARNING, "problem in update thread", e);
 }
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 TimeZone zone = eventline.getDateline().getTimeZone();
 long millis = Calendar.getInstance(zone).getTimeInMillis();
 eventline.setTimeNow(millis);
 }
 });
 }
}

Related API

TimeNowThread
void AbstractGanttChart.setTimeNowVisible(boolean visible);
void AbstractGanttChart.setTimeNowScrolling(boolean scroll);

Timeline Object Layers
Timeline object layers are variable in number. How many of them are created depends on the Gantt chart model. An ap-
plication is free to add any number of timeline object layers to the layer container. Timeline object layers are a grouping
mechanism for timeline objects. An application that supports before and after analysis might split its timeline objects into
two groups. The first group represents the „before“ situation, while the other group represents the „after“ situation. Putting
these objects onto different layers makes it possible to show or hide them as desired. Timeline object layers support
transparency. This way all objects are recognizable at the same time even though some of them might overlap others.

Timeline object layers are volatile objects. They can be created and deleted and recreated whenever changes in the
Gantt chart model happen. This is the reason why the renderers and the selection models are owned by the layer con-
tainer and not by the layer itself:

ITimelineObjectRenderer LayerContainer.getTimelineObjectRenderer(Class cl);
void LayerContainer.setTimelineObjectRenderer(Class cl, ITimelineObjectRenderer renderer);
ITimelineObjectLayerSelectionModel LayerContainer.getSelectionModel(ILayer layer);
void LayerContainer.setSelectionModel(ILayer layer, ITimelineObjectLayerSelectionModel model);

The primary purpose of the timeline object layer class is to draw the timeline objects. The layer class delegates this task
to renderers of type ITimelineObjectRenderer. Implementations of this renderer interface need to return a component,
which will be used like a brush to visualize one timeline object after another. Renderer components are only added tem-
porarily to the layer container. They will be removed after their paint methods have been called.

FlexGantt ships with several default renderers, which are mapped to default model classes. The following table lists the
renderer / model class mappings as defined by the LayerContainer class.

Model Class Renderer

Object.class DefaultTimelineObjectRenderer

Timeline Object (Renderer)

DefaultCapacityObject DefaultCapacityObjectRenderer

Capacity Object (Renderer)

FlexGantt - Layers Page 20

Model Class Renderer

DefaultActivityObject DefaultActivityObjectRenderer

This renderer provides additional feedback for the „percentage complete“ value stored
on the activity object.

Activity Object (Renderer)

DefaultEventObject DefaultEventObjectRenderer

This renderer is specialized on rendering events. An „event“ is a timeline object, which
does not have a duration (end time equals start time). The renderer uses icons to
represent these events.

Custom Layers
Custom layers have no predefined purpose at all. They are an extension point that application developers can use to add
arbitrary visual information to the Gantt chart. A custom layer might for example draw a rectangle around timeline objects
that are somehow related to each other.

A custom layer factory and a custom component factory are needed in order to add a custom layer to the layer stack of a
layer container. This means that the following steps are needed:

1. Implement the ILayerFactory interface or subclass DefaultLayerFactory (highly recommended).

2. Implement the IComponentFactory interface or subclass DefaultComponentFactory (highly recommended). This
component factory needs to pass the custom layer factory to the constructor of the layer container.

3. Create a Gantt chart model that adds one or more custom layers. A layer is considered a custom layer if
ILayer.isCustomLayer() returns true.

4. Create your Gantt chart using the custom component factory. This is done by passing the factory to the constructor
of the Gantt chart. The factory can not be set at a later time because it is already needed when the Gantt chart con-
structors its children components (timeline, tree table, layer container, ...).

The following code examples add a custom layer. The purpose of this layer is to add a watermark to the Gantt chart.
Such a watermark might be used to indicate to the users that they are using a demo / trial version of a software product.

/**
 * Copyright 2006, 2007
 * Dirk Lemmermann Software & Consulting
 * http://www.dlsc.com
 */
package com.dlsc.flexgantt.manual;

import com.dlsc.flexgantt.model.gantt.ILayer;
import com.dlsc.flexgantt.swing.layer.AbstractCustomLayer;
import com.dlsc.flexgantt.swing.layer.DefaultLayerFactory;
import com.dlsc.flexgantt.swing.layer.LayerContainer;

/**
 * A custom layer factory that gets used instead of the default layer factory so
 * that a custom layer gets created when it finds a model layer named 'watermark'.
 */
public class WatermarkLayerFactory extends DefaultLayerFactory {

 /*
 * The singleton instance.
 */
 private static WatermarkLayerFactory instance;

 /**
 * Private constructor as part of singleton pattern implementation.

Page 21 FlexGantt - Layers

 */
 private WatermarkLayerFactory() {
 }

 public static synchronized WatermarkLayerFactory getInstance() {
 if (instance == null) {
 instance = new WatermarkLayerFactory();
 }
 return instance;
 }

 /**
 * The default implementation of the factory method for creating custom
 * layers does nothing. In order to add custom layers it is necessary to
 * create a custom factory and then return custom layer implementations
 * whenever a model layer's 'custom layer' flag indicates that the layer
 * requires it.
 */
 public AbstractCustomLayer createCustomLayer(LayerContainer lc, ILayer layer) {
 if (layer.getName().equals("watermark")) {
 return new WatermarkLayer(lc, layer);
 } else {
 return super.createCustomLayer(lc, layer);
 }
 }
}

The following code is the implementation of the custom watermark layer.

/**
 * Copyright 2006, 2007
 * Dirk Lemmermann Software & Consulting
 * http://www.dlsc.com
 */
package com.dlsc.flexgantt.manual;

import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Image;
import java.awt.Rectangle;
import java.awt.TexturePaint;
import java.awt.image.BufferedImage;
import java.net.URL;

import javax.swing.ImageIcon;

import com.dlsc.flexgantt.model.gantt.ILayer;
import com.dlsc.flexgantt.swing.layer.AbstractCustomLayer;
import com.dlsc.flexgantt.swing.layer.LayerContainer;

/**
 * The watermark layer is a custom layer implementation. It will be created and
 * added to a layer container if one of the model layers is a custom layer and
 * the layer's name equals 'watermark'.
 *
 * @author Dirk Lemmermann
 */
public class WatermarkLayer extends AbstractCustomLayer {

 /*
 * Stores the texture paint that will be drawn as tiles in the background
 * of the layer (container).
 */
 private TexturePaint texturePaint;

 /**
 * Constructs a new watermark layer.
 *
 * @param lc the layer container to which the layer will belong
 */
 public WatermarkLayer(LayerContainer lc, ILayer layer) {
 super(lc, layer);

 //
 // Load an image and create a texture paint
 // object with it. This paint object can then
 // be used in the paintLayer() method to fill
 // the background with the watermark image.
 //
 URL url = getClass().getResource("watermark.png");

FlexGantt - Layers Page 22

 ImageIcon icon = new ImageIcon(url);
 Image texture = icon.getImage();
 BufferedImage buffer = new BufferedImage(texture
 .getWidth(layerContainer), texture
 .getHeight(layerContainer), BufferedImage.TYPE_INT_RGB);
 Graphics2D bg = buffer.createGraphics();
 bg.drawImage(texture, 0, 0, layerContainer);
 texturePaint = new TexturePaint(buffer, new Rectangle(0, 0, buffer
 .getWidth(), buffer.getHeight()));

 }

 protected void paintLayer(Graphics g) {
 Graphics2D g2d = (Graphics2D) g;
 Rectangle clip = g.getClipBounds();
 g2d.setPaint(texturePaint);
 g2d.fillRect(clip.x, clip.y, clip.width, clip.height);
 }
}

A Gantt chart model that wants the watermark layer to be shown then needs to add a custom model layer with the name
'watermark'.

/**
 * Copyright 2006, 2007
 * Dirk Lemmermann Software & Consulting
 * http://www.dlsc.com
 */
package com.dlsc.flexgantt.manual;

import com.dlsc.flexgantt.model.gantt.DefaultGanttChartModel;
import com.dlsc.flexgantt.model.gantt.DefaultGanttChartNode;
import com.dlsc.flexgantt.model.gantt.Layer;

/**
 * A specialization of the default Gantt chart model. It adds a custom layer
 * named 'watermark'. This model needs to get used in combination with a layer
 * factory that knows how to create a watermark layer.
 *
 * @author Dirk Lemmermann
 */
public class WatermarkGanttChartModel extends DefaultGanttChartModel {

 /**
 * Constructs a new Gantt chart model.
 */
 public WatermarkGanttChartModel() {
 super(new DefaultGanttChartNode());
 Layer layer = new Layer("watermark");
 layer.setCustomLayer(true);
 addLayer(layer);
 }
}

The last thing needed is a component factory that creates a layer container with the watermark layer factory. This com-
pany factory then needs to be passed to the constructor of the Gantt chart.

/**
 * Copyright 2006, 2007
 * Dirk Lemmermann Software & Consulting
 * http://www.dlsc.com
 */
package com.dlsc.flexgantt.manual;

import com.dlsc.flexgantt.model.gantt.IGanttChartModel;
import com.dlsc.flexgantt.swing.AbstractGanttChart;
import com.dlsc.flexgantt.swing.DefaultComponentFactory;
import com.dlsc.flexgantt.swing.layer.LayerContainer;
import com.dlsc.flexgantt.swing.treetable.TreeTable;

public class WatermarkComponentFactory extends DefaultComponentFactory {

 /**
 * Creates a layer container that uses the watermark layer factory.
 */
 public LayerContainer createLayerContainer(AbstractGanttChart gc,
 TreeTable table, IGanttChartModel model) {
 return new LayerContainer(gc, model, table, WatermarkLayerFactory.getInstance());
 }
}

Page 23 FlexGantt - Layers

Frequently Asked Questions (FAQ)

How can I change the transparency of a layer?
All layer types (system, custom, timeline object) are extensions of the AbstractLayer class. This class defines a method
called setAlpha(float). It is up to the layer implementation to decide how to use this alpha value but most actually do ap-
ply the value to all objects drawn by them. One exception is the popup layer in combination with the default popup ren-
derer class. This renderer will only apply the alpha value on the background of the popup. The text will not use transpar-
ency. This behavior can of course be changed by registering a different renderer on the layer.

How can the layer transparency be updated in real-time when using the slider in the
layer selector?
The transparency slider in the layer selector does not apply its current value immediately to the layerʻs alpha attribute.
This was done for performance reasons. Some layers show a lot of data. If they are repainted every single time the slid-
erʻs value changes then the user would notice a long delay between the old and the new position of the slider thumb.
The slider would become very hard to use. However, if the amount of data is small then it makes perfect sense to change
this behavior. FlexGantt provides the following method in the class LayerPalette.

void LayerPalette.setRepaintingImmediately(boolean).

The default is false. If set to true a repaint will occure on the layers immediately when the slider value changes.

In order to call this method one will need to get access to the palette first. This is somewhat complicated. The palette is
part of the LayerSelector, which gets created by an instance of ISelectorFactory. What you need to do is to subclass
TimeGranularitySelectorFactory and override the following method:

createSelector(AbstractGanttChart gc, JComponent parentComponent, SelectorID id)

Inside this method one needs to call super.createSelector(...). When the event ID equals LAYERS then the following can
be called to retrieve the content of the selector:

JComponent content = Selector.getContentComponent()

This method returns a panel. Each child in this returned panel is an instance of LayerPalette (remember the Dual-
GanttChart needs two layer palettes).

To make your Gantt chart use your selector factory override the following protected method:

ISelectorFactory AbstractGanttChart.getSelectorFactory()

How can I use different colors for different layers?
Colors are not used by or assigned to layers. Colors come in play when writing timeline object renderers (ITimelineOb-
jectRenderer). One has to implement custom renderers that uses some kind of attribute stored on the applicationʻs Gantt
chart model to select a color.

// Pseudo Code
public class MyRenderer extends JPanel implements ITimelineObjectRenderer {

 Component getTimelineObjectRendererComponent(TimelineObjectLayer layer,
 Object treeNode, Object timelineObject, boolean selected,
 boolean focus, boolean highlighted, int row) {
 MyModelObject model = (MyModelObject) timelineObject;
 Object attribute = model.getAttribute();
 if (attribute.equals(....)) {
 setBackground(Color.ORANGE);
 } else if (attribute.equalas("...")) {
 setBackground(Color.BLUE);
 }
 return this;
 }
}

Your renderer then needs to be registered on the layer container:

myGantt.getLayerContainer().setTimelineObjectRenderer(MyModelObject.class, new MyRenderer());

FlexGantt - Layers Page 24

Is it possible to remove the layer UI / layer palette / layer selector?
The control on which the user clicks to bring up the layer selector is simply a JLabel instance inside a panel. This panel is
of type UtilityControlPanel. This panel is shown in the lower left corner of the scrollpane that wraps the layer container.
This scrollpane is of type LayerContainerScrollPane. The following code fragment sets the label to invisible so that the
user can no longer click on it:

LayerContainerScrollPane pane = ganttChart.getLayerContainerScrollPane();
UtilityControlPanel ucp = (UtilityControlPanel) pane.getCorner(JScrollPane.LOWER_LEFT);
JLabel layerLabel = ucp.getLayerLabel();
layerLabel.setVisible(false);

How many layers can a Gantt chart display?
There is no restriction on the number of layers that can be added to a Gantt chart model. However, the number of layers
has a direct impact on the drawing performance. The layer container will always loop over all layers and perform at least
one check on them to see if they are visible (AbstractLayer.isVisible()). If a layer is in fact visible, then the layer container
will call the paintLayer(Graphics g) method on it. It depends on the amount of work done in these methods whether the
Gantt chartʻs performance is still acceptable.

Page 25 FlexGantt - Layers

