
Introduction to FlexGantt

Topic: Policies Dirk Lemmermann
Software & Consulting
Zurich, Switzerland

Policies

What is a Policy?
❖ A policy encapsulates a well defined (and limited in

scope) piece of functionality. The type of functionality
depends on the component that requires the policy.

❖ Example: the row policy covers anything related to
row height, row resizability, and produces the
command to alter row heights.

❖ Policies are pluggable. They can be registered with
policy providers.

Why Policies?
❖ Swing models work with „Object.class“.
❖ Problem: FlexGantt can not ask „Object.class“

anything (e.g. „are you selectable?“).
public interface TreeModel {

 public Object getRoot();
 public Object getChild(Object parent, int index);
 public int getChildCount(Object parent);
 public boolean isLeaf(Object node);
 public void valueForPathChanged(TreePath path, Object newValue);
 public int getIndexOfChild(Object parent, Object child);

}

Good News

❖ Swing and FlexGantt both ship with default
implementations of their models.

❖ The default models do not use „Object.class“
❖ DefaultGanttChartNode, DefaultTimelineObject
❖ Most policy decisions are directly delegated to the

default model classes.
❖ Note: commands are ALWAYS retrieved via a policy.

Policy Provider
/**
 * A policy provider supplies the component (e.g. a tree table or a timeline)
 * that it is attached to with policy implementations. These implementations can
 * be registered with the provider. They can be looked up based on the policy
 * interface.
*/
public interface IPolicyProvider {

/**
 * Registers a policy implementation for the given policy type (policy
 * interface).
 */
<T extends IPolicy> void setPolicy(Class<T> policyType, T policyImpl);

/**
 * Returns a policy implementation for the given policy type (policy
 * interface).
 */
<T extends IPolicy> T getPolicy(Class<T> policyType);

…
}

Policy Providers
❖ Used by:

❖ AbstractGanttChart
❖ LayerContainer
❖ TreeTable
❖ Dateline
❖ Eventline

Where are policies used?

Policy User: AbstractGanttChart

❖ Uses a single policy: IStatusBarPolicy.
❖ Determines which fields are visible in the

statusbar.
❖ Formats various strings for proper display in

the statusbar.

Policy User: LayerContainer
❖ IDragAndDropPolicy
❖ IEditTimeline/Activity/

CapacityObjectPolicy
❖ ILabelPolicy
❖ IRelationshipPolicy
❖ IPopupPolicy
❖ ISelectionPolicy
❖ ICrosshairPolicy

❖ IOverviewPolicy
❖ ILinePolicy
❖ IEditLayerPolicy
❖ IGridPolicy
❖ IGridLinePolicy
❖ IDragInfoPolicy
❖ ISpreadsheetEditPolicy

Policy User: TreeTable

❖ INodeDragAndDropPolicy
❖ INodeEditPolicy
❖ IRowPolicy

Policy User: Dateline
❖ IZoomPolicy
❖ Determines the available

granularities.

Policy User: Eventline

❖ IEventlineLabelPolicy
❖ IEditEventlineObjectPolicy
❖ IEventlineSelectionPolicy
❖ IGridPolicy

Policies

ICrosshairPolicy
❖ Very simple: returns the text for the four

corners of the crosshair.

IDragAndDropPolicy
❖ Can a timeline object be dragged? If yes,

how? (Move, Copy, Move & Copy, None).
❖ Which command has to be executed for a

given timeline object when it gets dropped?

IDragInfoPolicy
❖ Returns the model object used for displaying

a popup while moving a timeline object,
setting the „percentage complete“ value, or
changing the „capacity used“ value.

IEditTimelineObjectPolicy
❖ Determines which editing operations are

allowed for a given timeline object.
❖ Create, Delete, Start Time, Duration, In-

Place Editing
❖ Returns the necessary commands to perform

the changes.

IEditActivityObjectPolicy
❖ Determines if the „percentage complete“

value of an activity is editable.
❖ Returns the command to set a new value for

„percentage complete“.

IEditCapacityObjectPolicy
❖ Determines if the „capacity used“ value of a

capacity object is editable.
❖ Returns the command to set a new value for

„capacity used“.

IEditEventlineObjectPolicy
❖ Determines which editing operations are

allowed for a given eventline object.
❖ Create, Delete, Start Time, Duration

❖ Returns the necessary commands to perform
the changes.

IEditLayerObjectPolicy
❖ Returns commands for adding and removing

layers.

IEventlineLabelPolicy
❖ Returns the various labels used by eventline

objects
❖ Name, Description, Tooltip

IEventlineSelectionPolicy
❖ Used only for the purpose of determining

whether an eventline object is selectable or
not.

IGridLinePolicy
❖ Used to check visibility of major and minor

grid lines.

IGridPolicy
❖ Controls a virtual (non-visible) grid that is used to

make timeline objects „snap“ to grid locations after
editing operations.

T[] getGridGranularities(); // hours, minutes, seconds

long getGridAdjustedStartTime(T granularity,
long unadjustedStartTime,
IDatelineModel<T> datelineModel, boolean autoGrid);

long getGridAdjustedEndTime(T granularity, long unadjustedEndTime,
IDatelineModel<T> datelineModel, boolean autoGrid);

ITimeSpan getGridAdjustedTimeSpan(T granularity,
ITimeSpan unadjustedTimeSpan, IDatelineModel<T> datelineModel,
boolean autoGrid);

ILabelPolicy
❖ Determines the visibility and the text for

various timeline object labels.

public enum LabelType {

NAME, // shown in various places
TOOLTIP, // when popups are off, regular tooltips can be used
DESCRIPTION, // shown to the right of the timeline object
STATUS, // shown in the statusbar
DRAG_INFO_TITLE // shown in the title of the drag info popup

}

ILinePolicy
❖ Used for controlling „inner lines / rows“.

❖ Line count
❖ Height of each line
❖ Location of each line (lines can overlap)
❖ Visibility of each line
❖ Line index for a given timeline object / placement

Line 1

Line 0
Line 1

Line 2

RowLine = -1 Line = -1

INodeDragAndDropPolicy
❖ Covers drag and drop

operations within the tree table.
❖ Returns possible drag actions for

a given node.
❖ Returns possible drop actions for

a given target node.
❖ Returns the command to

actually perform the necessary
model changes.

INodeEditPolicy
❖ Covers various node editing aspects:

❖ Can new nodes be created?
❖ Is a node deletable?
❖ Is the key of a node editable?
❖ Is a certain column value editable?
❖ Is a node reassignable to a new parent node (e.g. for indentation

purposes)?
❖ Is a node selectable?

❖ Returns commands for changing a key / column value, for creating
nodes, for deleting nodes, for inserting nodes.

IOverviewPolicy
❖ Returns a status object for a given timeline

object.
❖ Status object is used by overview display to

highlight problems in the Gantt chart.

IPopupPolicy
❖ Returns the two input objects for popup

renderers.
❖ Title and Content (standard and extended).

IRelationshipPolicy
❖ Defines „linking“ capabilities.

❖ Is a link deletable?
❖ Is a timeline object a possible link „source“?
❖ Is a timeline object a possible link „target“?

IRowPolicy
❖ Used for retrieving information about

individual rows.
❖ Current / Minimum / Maximum height.
❖ Visibility of row divider line (good for

grouping rows).
❖ Is row resizable?
❖ Returns the „row resize“ command (so it

can be undone / redone).

ISelectionPolicy
❖ Controls which objects can be selected by the

user.
❖ Timeline objects
❖ Tree nodes
❖ Relationships / Links

ISpreadsheetEditPolicy
❖ Only used to lookup the command for

modifying a spreadsheet value.

IStatusBarPolicy
❖ Determines which fields are visible in the

statusbar.
❖ Formats various strings for proper display in

the statusbar.

IZoomPolicy
❖ IZoomPolicy
❖ Determines the available

granularities.

